Background: The progression and severity of periodontitis (PD) are associated with the release of extracellular vesicles by periodontal tissue cells. However, the precise mechanisms through which exosome-related genes (ERGs) influence PD remain unclear. This study aimed to investigate the role and potential mechanisms of key exosome-related genes in PD using transcriptome profiling at the single-cell level.
Methods: The current study cited GSE16134, GSE10334, GSE171213 datasets and 19,643 ERGs. Initially, differential expression analysis, three machine learning (ML) models, gene expression analysis and receiver operating characteristic (ROC) analysis were proceeded to identify core genes. Subsequently, a core gene-based artificial neural network (ANN) model was built to evaluate the predictive power of core genes for PD. Gene set enrichment analysis (GSEA) and immunoinfiltration analysis were conducted based on core genes. To pinpoint key cell types influencing the progression of periodontal at the single-cell level, a series of single-cell analyses covering pseudo-time series analysis were accomplished. The expression verification of core genes was performed through quantitative reverse transcription polymerase chain reaction (qRT-PCR).
Results: CKAP2, IGLL5, MZB1, CXCL6, and AADACL2 served as core genes diagnosing PD. Four core gene were elevated in the PD group in addition to down-regulated AADACL2. The core gene-based-ANN model had AUC values of 0.909 in GSE16134 dataset, which exceeded AUC of each core gene, highlighting the accurately and credibly predictive performance of ANN model. GSEA revealed that ribosome was co-enriched by 5 core genes, manifesting the expression of these genes might be critical for protein structure or function. Immunoinfiltration analysis found that CKAP2, IGLL5, MZB1, and CXCL6 exhibited positive correlations with most discrepant immune cells/discrepant stromal cells, which were highly infiltrated in PD. B cells and T cells holding crucial parts in PD were identified as key cell types. Pseudo-time series analysis revealed that the expression of IGLL5 and MZB1 increased during T cell differentiation, increased and then decreased during B cell differentiation. The qRT-PCR proved the mRNA expression levels of CKAP2 and MZB1 were increased in the blood of PD patients compared to controls. But the mRNA expression levels of AADACL2 was decreased in the PD patients compared to controls. This is consistent with the trend in the amount of expression in the dataset.
Conclusion: CKAP2, IGLL5, MZB1, CXCL6 and AADACL2 were identified as core genes associated with exosomes, helping us to understand the role of these genes in PD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1186/s12903-024-05409-w | DOI Listing |
Ecotoxicol Environ Saf
January 2025
Lin He's Academician Workstation of New Medicine and Clinical Translation in Jining Medical University, Jining Medical University, Jining, Shandong Province, China. Electronic address:
The expanded lethal (2) essential for life [l(2)efl] gene family is responsive to proteostatic stresses. Their protein products are core components of the stress response mechanism and are emerging as promising biomarkers for cellular stress in Apis mellifera. However, l(2)efl (LOC410857) uniquely remains unresponsive to heat stress within this gene family, and research examining its role in adaptation to other types of stress across diverse bee species is scarce.
View Article and Find Full Text PDFWaste Manag
January 2025
Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China. Electronic address:
The mycelial networks of fungi promote the interaction between the originally isolated bacteria, thereby potentially enhancing the exchange of nutrients and the horizontal transfer of genetic materials. However, the driving effect of fungi on antibiotic resistance genes (ARGs) during mesophilic facultative composting is still unclear. This study aims to elucidate the changes in ARGs and underlying mechanisms during the mesophilic composting of manure.
View Article and Find Full Text PDFFront Plant Sci
December 2024
SD Guthrie Research Sdn. Bhd., Banting, Selangor Darul Ehsan, Malaysia.
Oil palm () yield is impacted by abiotic stresses, leading to significant economic losses. To understand the core abiotic stress transcriptome (CAST) of oil palm, we performed RNA-Seq analyses of oil palm leaves subjected to drought, salinity, waterlogging, heat, and cold stresses. A total of 19,834 differentially expressed genes (DEGs) were identified.
View Article and Find Full Text PDFThe global outbreak of COVID-19, caused by the SARS-CoV-2 virus, has been linked to long-term neurological complications, including an increased risk of Alzheimer's disease (AD) among older adults. However, the precise genetic impact of COVID-19 on long-term AD development remains unclear. This study leveraged genome-wide association study (GWAS) data and genotype data to explore the genetic association between AD and various COVID-19 phenotypes across European ancestry (EA) and African ancestry (AA) cohorts, and the possibility of a causal effect of COVID-19 on AD.
View Article and Find Full Text PDFUnlabelled: The maturation of RNA is mediated by the coordinated actions of RNA-binding proteins through post-transcriptional pre-mRNA processing. This process is a central regulatory mechanism for gene expression and plays a crucial role in the development of complex biological systems. MYC directly upregulates transcription of genes encoding the core components of pre-mRNA splicing machinery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!