Several members of the NIMA-related kinase (NEK) family have been implicated in tumor progression; however, the role and underlying mechanisms of NEK8 in gastric cancer (GC) remain unclear. This study revealed a significant upregulation of NEK8 in GC, identifying it as an independent prognostic marker in patients with GC. Consistent with these findings, NEK8 silencing substantially impeded GC aggressiveness both in vitro and in vivo, while its overexpression produced the opposite effect. Gene Ontology enrichment analysis and metabolic profiling indicated that the impact of NEK8 on GC is primarily associated with reprogramming asparagine metabolism and modulating the mTORC1 pathway. Specifically, NEK8 knockdown suppressed asparagine synthesis by downregulating asparagine synthetase (ASNS) expression in GC cells. A strong correlation was observed between NEK8 levels and ASNS expression in human GC cells and tissue samples. Mechanistically, NEK8 directly interacts with ASNS, phosphorylating it at the S349 site, which inhibits its ubiquitination and subsequent degradation. Moreover, substituting the ASNS-S349 site with alanine abrogated the pro-tumorigenic effects of ASNS-WT overexpression. Additionally, asparagine was identified as an activator of the mTORC1 pathway, with reintroducing asparagine after NEK8 silencing restoring mTORC1 activity. Collectively, these findings demonstrate that NEK8-mediated asparagine synthesis and activation of the mTORC1 pathway play a critical role in promoting GC progression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1186/s10020-024-01062-9 | DOI Listing |
Mol Med
January 2025
General Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China.
Several members of the NIMA-related kinase (NEK) family have been implicated in tumor progression; however, the role and underlying mechanisms of NEK8 in gastric cancer (GC) remain unclear. This study revealed a significant upregulation of NEK8 in GC, identifying it as an independent prognostic marker in patients with GC. Consistent with these findings, NEK8 silencing substantially impeded GC aggressiveness both in vitro and in vivo, while its overexpression produced the opposite effect.
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
January 2025
School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
Rapamycin, a macrocyclic antibiotic derived from the actinomycetes Streptomyces hygroscopicus, is a widely used immunosuppressant and anticancer drug. Even though rapamycin is regarded as a multipotent drug acting against a broad array of anomalies and diseases, the mechanism of action of rapamycin and associated pathways have not been studied and reported clearly. Also reports on the binding of rapamycin to cancer cell receptors are limited to the serine/threonine protein kinase mTORC1.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
January 2025
Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China. Electronic address:
Background: Cardiac hypertrophy is characterized by the upregulation of fetal genes, increased protein synthesis, and enlargement of cardiac myocytes. The mechanistic target of rapamycin complex 1 (mTORC1), which responds to fluctuations in cellular nutrient and energy levels, plays a pivotal role in regulating protein synthesis and cellular growth. While attempts to inhibit mTORC1 activity, such as through the application of rapamycin and its analogs, have demonstrated limited efficacy, further investigation is warranted.
View Article and Find Full Text PDFJ Mol Med (Berl)
January 2025
Cardiovascular Surgery Department of The First Affiliated Hospital of Harbin Medical University, and Pharmacology Department of Pharmacy College of Harbin Medical University, Harbin, 150081, China.
Myocardial ischemia/reperfusion (IR) injury is a common adverse event in the clinical treatment of myocardial ischemic disease. Autosis is a form of cell death that occurs when autophagy is excessive in cells, and it has been associated with cardiac IR damage. This study aimed to investigate the regulatory mechanism of circRNA CDR1AS on autosis in cardiomyocytes under IR.
View Article and Find Full Text PDFCytokine
January 2025
Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara 06490, Türkiye.
Endogenous and exogenous factors play a role in endothelial dysfunction. Inflammation, leukocyte adhesion-aggregation, abnormal vascular proliferation, atherosclerosis, and hypertension are among the endogenous factors. Another factor that affects endothelial dysfunction is exogenous factors such as drug treatments, smoking, alcohol, and nutrition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!