Background: Stemona tuberosa, a vital species in traditional Chinese medicine, has been extensively cultivated and utilized within its natural distribution over the past decades. While the chloroplast genome of S. tuberosa has been characterized, its mitochondrial genome (mitogenome) remains unexplored.

Results: This paper details the assembly of the complete S. tuberosa mitogenome, achieved through the integration of Illumina and Nanopore sequencing technologies. The assembled mitogenome is 605,873 bp in size with a GC content of 45.63%. It comprises 66 genes, including 38 protein-coding genes, 25 tRNA genes, and 3 rRNA genes. Our analysis delved into codon usage, sequence repeats, and RNA editing within the mitogenome. Additionally, we conducted a phylogenetic analysis involving S. tuberosa and 17 other taxa to clarify its evolutionary and taxonomic status. This study provides a crucial genetic resource for evolutionary research within the genus Stemona and other related genera in the Stemonaceae family.

Conclusion: Our study provides the inaugural comprehensive analysis of the mitochondrial genome of S. tuberosa, revealing its unique multi-branched structure. Through our investigation of codon usage, sequence repeats, and RNA editing within the mitogenome, coupled with a phylogenetic analysis involving S. tuberosa and 17 other taxa, we have elucidated its evolutionary and taxonomic status. These investigations provide a crucial genetic resource for evolutionary research within the genus Stemona and other related genera in the Stemonaceae family.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12870-024-06034-zDOI Listing

Publication Analysis

Top Keywords

rna editing
12
analysis mitochondrial
8
stemona tuberosa
8
genome tuberosa
8
mitochondrial genome
8
codon usage
8
usage sequence
8
sequence repeats
8
repeats rna
8
editing mitogenome
8

Similar Publications

RPM: rapid detection of chloroplast RNA editing efficiency.

Trends Plant Sci

January 2025

College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China. Electronic address:

View Article and Find Full Text PDF

Application of the SpCas9 inhibitor BRD0539 for CRISPR/Cas9-based genetic tools in .

Biosci Microbiota Food Health

September 2024

Department of Agricultural Chemistry, Graduate School of Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan.

Although the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas system has been extensively developed since its discovery for eukaryotic and prokaryotic genome editing and other genetic manipulations, there are still areas warranting improvement, especially regarding bacteria. In this study, BRD0539, a small-molecule inhibitor of Cas9 (SpCas9), was used to suppress the activity of the nuclease during genetic modification of , as well as to regulate CRISPR interference (CRISPRi). First, we developed and validated a CRISPR-SpCas9 system targeting the gene of .

View Article and Find Full Text PDF

Oil palm () yield is impacted by abiotic stresses, leading to significant economic losses. To understand the core abiotic stress transcriptome (CAST) of oil palm, we performed RNA-Seq analyses of oil palm leaves subjected to drought, salinity, waterlogging, heat, and cold stresses. A total of 19,834 differentially expressed genes (DEGs) were identified.

View Article and Find Full Text PDF

Biallelic pathogenic variants in the nebulin ( ) gene lead to the congenital muscle disease nemaline myopathy. In-frame deletion of exon 55 (ΔExon55) is the most common disease-causing variant in . Previously, a mouse model of was developed; however, it presented an uncharacteristically severe phenotype with a near complete reduction in transcript expression that is not observed in exon 55 patients.

View Article and Find Full Text PDF

The integration of conventional omics data such as genomics and transcriptomics data into artificial intelligence models has advanced significantly in recent years; however, their low applicability in clinical contexts, due to the high complexity of models, has been limited in their direct use inpatients. We integrated classic omics, including DNA mutation and RNA gene expression, added a novel focus on promising omics methods based on A>I(G) RNA editing, and developed a drug response prediction model. We analyzed 104 patients from the Breast Cancer Genome-Guided Therapy Study (NCT02022202).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!