Habitat-based MRI radiomics to predict the origin of brain metastasis.

Med Phys

Department of Scientific Research and Academic, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, P. R. China.

Published: January 2025

Background: This study aims to explore the value of habitat-based magnetic resonance imaging (MRI) radiomics for predicting the origin of brain metastasis (BM).

Purpose: To investigate whether habitat-based radiomics can identify the metastatic tumor type of BM and whether an imaging-based model that integrates the volume of peritumoral edema (VPE) can enhance predictive performance.

Methods: A primary cohort was developed with 384 patients from two centers, which comprises 734 BM lesions. An independent cohort was developed with 28 patients from a third center, which comprises 70 BM lesions. All patients underwent T1-weighted contrast-enhanced (T1CE) and T2-weighted (T2W) MRI scans before treatment. Radiomics features were extracted from tumor active area (TAA) and peritumoral edema area (PEA) selected using the least absolute shrinkage and selection operator (LASSO) to construct radiomics signatures (Rads). The Rads were further integrated with VPE to build combined models for predicting the metastatic type of BM. Performance of the models were assessed through receiver operating characteristic (ROC) curve analysis.

Results: Rads derived from TAA and PEA both showed predictive power for identifying the origin of BM. The developed combined models generated the best performance in the training (AUCs, lung cancer [LC]/non-lung cancer [NLC] vs. small cell lung cancer [SCLC]/non-small cell lung cancer [NSCLC] vs. breast cancer [BC]/gastrointestinal cancer [GIC], 0.870 vs. 0.946 vs. 0.886), internal validation (area under the receiver operating characteristic curves [AUCs], LC/NLC vs. SCLC/NSCLC vs. BC/GIC, 0.786 vs. 0.863 vs. 0.836) and external validation (AUCs, LC /NLC vs. SCLC/NSCLC vs. BC/GIC, 0.805 vs. 0.877 vs. 0.774) cohort.

Conclusions: The developed habitat-based radiomics models can effectively identify the metastatic tumor type of BM and may be considered as a potential preoperative basis for timely treatment planning.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mp.17610DOI Listing

Publication Analysis

Top Keywords

lung cancer
12
mri radiomics
8
origin brain
8
brain metastasis
8
habitat-based radiomics
8
identify metastatic
8
metastatic tumor
8
tumor type
8
peritumoral edema
8
cohort developed
8

Similar Publications

Design, synthesis, and biological evaluation of a potent and orally bioavailable FGFRs inhibitor for fibrotic treatment.

Eur J Med Chem

January 2025

Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China. Electronic address:

Organ fibrosis, such as lung fibrosis and liver fibrosis, is a progressive and fatal disease. Fibroblast growth factor receptors (FGFRs) play an important role in the development and progression of fibrosis. Through scaffold hopping, bioisosteric replacement design, and structure-activity relationship optimization, we developed a series of highly potent FGFRs inhibitors, and the indazole-containing candidate compound A16 showed potent kinase activity comparable to that of AZD4547.

View Article and Find Full Text PDF

The current (and possible future) role of opioid analgesia in lung cancer surgery.

Best Pract Res Clin Anaesthesiol

March 2024

Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, Department of Anesthesia and Critical Care Medicine, 1275 York Avenue, New York, NY, 10028, USA. Electronic address:

The objectives of this minireview are two-fold. The first is to discuss the evolution of opioid analgesia in perioperative medicine in the context of thoracic non-cardiac surgery. Current standard-of-care, aiming to optimize analgesia and limit undesirable side effects, is discussed in the context of multimodal analgesia, specifically enhanced recovery after thoracic surgery pathways.

View Article and Find Full Text PDF

Robotic bronchoscopy: Evolution of advanced diagnostic technologies for pulmonary lesions.

Best Pract Res Clin Anaesthesiol

March 2024

1400 Holcombe Blvd, FC 13.2000, Houston, TX, 77030, USA. Electronic address:

Lung cancer is among one of the most commonly diagnosed malignancies and is the leading cause of cancer-related mortality in both men and women globally, with an estimated 1.8 million deaths annually. Moreover, it is also the leading cause of cancer related deaths in the United States (U.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!