Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose Of Review: This article explores the cardiovascular effects of sodium-glucose cotransporter 2 inhibitors (SGLT2i) in patients with type 2 diabetes mellitus (T2DM), with a particular focus on their impact on lipid profiles. As evidence grows of the cardiovascular benefits of SGLT2i beyond glucose control, it is essential to better understand their effects on lipoproteins and their impact on cardiovascular disease.
Recent Findings: SGLT2i have shown significant cardiovascular benefits in patients with type 2 diabetes mellitus, beyond their role in lowering blood glucose. Studies indicate that SGLT2i reduce major adverse cardiovascular events by impacting factors such as blood pressure, body weight, and arterial stiffness. However, their effects on lipid profile remain complex and somewhat inconsistent. Some research points to modest increases in LDL cholesterol, while others report shifts toward less atherogenic lipid profile, including reductions in triglycerides and small, dense LDL particles, and increases in HDL-C. SGLT2i represent a significant advancement in managing diabetes and associated cardiovascular risks, with benefits such as triglyceride reduction and HDL-C increase. While their impact on LDL-C remains controversial and varies across studies, the reduction of small, dense LDL particles may mitigate negative effects. This article highlights the need for future research to better understand the specific mechanisms behind lipid modulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11892-024-01572-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!