The sensation of mechanical stimuli is initiated by elastic gating springs that pull open mechanosensory transduction channels. Searches for gating springs have focused on force-conveying protein tethers such as the amino-terminal ankyrin tether of the Drosophila mechanosensory transduction channel NOMPC. Here, by combining protein domain duplications with mechanical measurements, electrophysiology, molecular dynamics simulations and modeling, we identify the NOMPC gating-spring as the short linker between the ankyrin tether and the channel gate. This linker acts as a Hookean hinge that is ten times more elastic than the tether, with the linker hinge dictating channel gating and the intrinsic stiffness of the gating spring. Our study shows how mechanosensation is initiated molecularly; disentangles gating springs and tethers, and respective paradigms of channel gating; and puts forward gating springs as core ion channel constituents that enable efficient gating by diverse stimuli and in a wide variety of channels.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41593-024-01849-3DOI Listing

Publication Analysis

Top Keywords

gating springs
16
gating
9
ion channel
8
gating spring
8
mechanosensory transduction
8
ankyrin tether
8
channel gating
8
channel
6
nompc ion
4
channel hinge
4

Similar Publications

The sensation of mechanical stimuli is initiated by elastic gating springs that pull open mechanosensory transduction channels. Searches for gating springs have focused on force-conveying protein tethers such as the amino-terminal ankyrin tether of the Drosophila mechanosensory transduction channel NOMPC. Here, by combining protein domain duplications with mechanical measurements, electrophysiology, molecular dynamics simulations and modeling, we identify the NOMPC gating-spring as the short linker between the ankyrin tether and the channel gate.

View Article and Find Full Text PDF

Over the past two decades, guidelines for the on-demand treatment of hereditary angioedema (HAE) attacks have undergone significant evolution. Early treatment guidelines, such as the Canadian 2003 International Consensus Algorithm, often gated on-demand treatment by attack location and/or severity. Pivotal trials for on-demand injectable treatments (plasma-derived C1 esterase inhibitor [C1INH], icatibant, ecallantide [US only], recombinant C1INH), which were approved in the US and EU between 2008-2014, were designed accordingly.

View Article and Find Full Text PDF

An intermediate open structure reveals the gating transition of the mechanically activated PIEZO1 channel.

Neuron

December 2024

State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center of Biological Structure, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China. Electronic address:

PIEZO1 is a mechanically activated cation channel that undergoes force-induced activation and inactivation. However, its distinct structural states remain undefined. Here, we employed an open-prone PIEZO1-S2472E mutant to capture an intermediate open structure.

View Article and Find Full Text PDF

Accelerating evidence generation: Addressing critical challenges and charting a path forward.

J Clin Transl Sci

October 2024

Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, NC, USA.

Efficient evidence generation to assess the clinical and economic impact of medical therapies is critical amid rising healthcare costs and aging populations. However, drug development and clinical trials remain far too expensive and inefficient for all stakeholders. On October 25-26, 2023, the Duke Clinical Research Institute brought together leaders from academia, industry, government agencies, patient advocacy, and nonprofit organizations to explore how different entities and influencers in drug development and healthcare can realign incentive structures to efficiently accelerate evidence generation that addresses the highest public health needs.

View Article and Find Full Text PDF

In our ears, outer-hair-cell bundles (OHBs) convert sound-induced forces into receptor currents that drive cochlear amplification, the process responsible for the micropascal-scale threshold and million-fold dynamic range of hearing. OHBs rely on gating springs to open mechanoelectrical-transduction (MET) ion channels, through which the receptor current flows. OHBs have larger gating-spring stiffnesses than other types of hair bundles, but we have a poor understanding of how gating-spring stiffness contributes to OHB mechanics and receptor-current regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!