Japanese encephalitis virus (JEV) is the leading cause of viral encephalitis in the Asia-Pacific region. Amplification of JEV in pigs is a potent driver for spillover of the infection to humans, and hence monitoring of virus dynamics in pigs can provide insights into JEV ecology. To study the dynamics of natural JEV infection in a tropical region, two groups of immunologically naïve pigs consisting of six animals per group were kept as sentinels on two different farms in the district of Thanjavur, Tamil Nadu, India. In a longitudinal study conducted from May 2022 to October 2023, nested RT-PCR and indirect ELISA were used to track the dynamics of JEV and the humoral response in pigs. Synchronous and asynchronous seroconversion in pigs was recorded on two different farms with different management practices. Repeated infections with JEV were recorded in all of the sentinel animals throughout the study period, irrespective of the season. Phylogenetic analysis revealed the presence of JEV genotype III in the region. It was observed that the IgG response to natural JEV infection did not last long, which might have been the reason for repeated infections in the sentinel animals. The longest period during which IgG was present at detectable levels in this study was two months, after which the pigs could once again amplify the virus. A significant positive correlation was found between wind speed and JEV incidence in sentinel animals. Our results offer a different perspective on the relationship between JEV and its amplifying host that contradicts the assumption that pre-immune pigs are resistant to JEV amplification. Our findings could have a major impact on our understanding of the ecology of JEV in tropical regions, where there is a high burden of JE despite coordinated prevention efforts that have relied on achieving a long-lasting immune response.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00705-024-06208-yDOI Listing

Publication Analysis

Top Keywords

jev
12
sentinel animals
12
immune response
8
pigs
8
response pigs
8
japanese encephalitis
8
encephalitis virus
8
amplifying host
8
natural jev
8
jev infection
8

Similar Publications

Introduction: Japanese encephalitis virus (JEV) and Zika virus (ZIKV) are prevalent in over 80 countries or territories worldwide, causing hundreds of thousands of cases annually. But currently there is a lack of specific antiviral agents and effective vaccines.

Methods: In the present study, to identify human neutralizing monoclonal antibody (mAb) against JEV or/and ZIKV, we isolated ZIKV-E protein-binding B cells from the peripheral venous blood of a healthy volunteer who had received the JEV live-attenuated vaccine and performed 10× Genomics transcriptome sequencing and BCR sequencing analysis, we then obtained the V region amino acid sequences of a novel mAb LZY3412.

View Article and Find Full Text PDF

Japanese encephalitis virus (JEV) is the leading cause of viral encephalitis in the Asia-Pacific region. Amplification of JEV in pigs is a potent driver for spillover of the infection to humans, and hence monitoring of virus dynamics in pigs can provide insights into JEV ecology. To study the dynamics of natural JEV infection in a tropical region, two groups of immunologically naïve pigs consisting of six animals per group were kept as sentinels on two different farms in the district of Thanjavur, Tamil Nadu, India.

View Article and Find Full Text PDF

Advancements in nanoparticle-based vaccine development against Japanese encephalitis virus: a systematic review.

Front Immunol

January 2025

State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.

Vaccination remains the sole effective strategy for combating Japanese encephalitis (JE). Both inactivated and live attenuated vaccines exhibit robust immunogenicity. However, the production of these conventional vaccine modalities necessitates extensive cultivation of the pathogen, incurring substantial costs and presenting significant biosafety risks.

View Article and Find Full Text PDF

Background: Selective androgen receptor modulators (SARMs) are small-molecule compounds that exert agonist and antagonist effects on androgen receptors in a tissue-specific fashion. Because of their performance-enhancing implications, SARMs are increasingly abused by athletes. To date, SARMs have no Food and Drug Administration approved use, and recent case reports associate the use of SARMs with deleterious effects such as drug-induced liver injury, myocarditis, and tendon rupture.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are important mediators of intercellular communication in the tumour microenvironment. The cytokine transforming growth factor-β (TGF-β) facilitates cancer progression via EVs secreted by cancer cells, which act on recipient cells in the tumour microenvironment. However, the mechanisms of how TGF-β affects cancer cell EV release and composition are incompletely understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!