Excessive auxin accumulation inhibits protocorm development during germination of Paphiopedilum spicerianum, delaying shoot meristem formation by downregulating boundary genes (CUC1, CUC2, CLV3) and promoting fungal colonization, essential for seedling establishment. Paphiopedilum, possess high horticultural and conservational value. Asymbiotic germination is a common propagation method, but high rates of protocorm developmental arrest hinder seedling establishment. Our study found that the key difference between normally developing protocorm (NDP) and arrested developmental protocorm (ADP) is their capability for continuous cell differentiation. In ADP, cells divide without differentiating, with indole-3-acetic acid (IAA) levels being 20 times higher than that in NDP. This suggests that auxin level plays a role in protocorm cell fate determination. Exogenous application of NAA demonstrated that elevated auxin level can delay the formation of the shoot apical meristem (SAM) inside the protocorm. Gene expression analysis revealed that elevated auxin can inhibit or even halt the SAM formation through down-regulation of SAM-related genes such as CLV3, CUC1 and CUC2. High auxin levels also led to reduced cell wall rigidity by up-regulation of cell wall expanding protein (EXPB15), thereby creating ideal conditions for fungi entry. Inoculation with a compatible orchid mycorrhizal fungus (OMF) resulted in successful cell differentiation of ADP and eventually triggered the conversion of ADP to NDP. Since the protocorm is a distinct structure that facilitates the establishment of symbiotic associations with compatible OMF, we propose that the excessive auxin accumulation inside Paphiopedilum protocorm can pause the further development of protocorm and soften the cell wall. This strategy likely serves to enhance the attraction and colonization by OMFs in the native habitat of Paphiopedilum, facilitating essential symbiotic relationships necessary for their survival and growth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00299-024-03419-0 | DOI Listing |
J Hazard Mater
December 2024
College of Resources, Sichuan Agricultural University, Chengdu 611130, China. Electronic address:
Polylactic acid (PLA) microplastics (MPs) and lead (Pb) co-contamination, an emerging co-contamination, may profoundly impact plant growth. We aimed to evaluate the effects of PLA-MPs and Pb on buckwheat growth and physiology and to elucidate the underlying molecular mechanisms through an integrated transcriptomic and metabolomic approach. PLA-MPs alone reduced buckwheat biomass by 26.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei 050017, China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China. Electronic address:
6:2 Chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA; trade name F-53B) is an alternative to perfluorooctane sulfonate (PFOS) and is widely detected in various environmental media and biological samples. Polystyrene nanoplastics (PS-NPs) have become a significant pollutant in the global environment. However, the comprehensive effects of both on the vascular system of mammals are still unclear.
View Article and Find Full Text PDFPhytother Res
January 2025
College of Veterinary Medicine, Yangzhou University, Yangzhou, China.
The rising prevalence of multidrug-resistant (MDR) Gram-positive bacteria threatens the effectiveness of current antibiotic therapies. However, the development of new antibiotics has stagnated in recent years, highlighted the critical need for the discovery of innovative antimicrobial agents. This study aims to evaluate the antibacterial activity of naphthoquinones derived from Arnebia euchroma (Royle) Johnst (ADNs) and elucidate their underlying mechanisms.
View Article and Find Full Text PDFCell Surf
December 2024
Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain.
The activation of progenitor cells near wound sites is a common feature of regeneration across species, but the conserved signaling mechanisms responsible for this step in whole-body regeneration are still incompletely understood. The acoel undergoes whole-body regeneration using Piwi+ pluripotent adult stem cells (neoblasts) that accumulate at amputation sites early in the regeneration process. The EGFR signaling pathway has broad roles in controlling proliferation, migration, differentiation, and cell survival across metazoans.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!