Cellular senescence contributes to a variety of pathologies associated with aging and is implicated as a cellular state in which cancer cells can survive treatment. Reported senolytic drug treatments act through varying molecular mechanisms, but heterogeneous efficacy across the diverse contexts of cellular senescence indicates a need for predictive biomarkers of senolytic activity. Using multi-parametric analyses of commonly reported molecular features of the senescent phenotype, we assayed a variety of models, including malignant and nonmalignant cells, using several triggers of senescence induction and found little univariate predictive power of these traditional senescence markers to identify senolytic drug sensitivity. We sought to identify novel drug targets in senescent cells that were insensitive to frequently implemented senolytic therapies, such as Navitoclax (ABT-263), using quantitative mass spectrometry to measure changes in the senescent proteome, compared to cells which acquire an acute sensitivity to ABT-263 with senescence induction. Inhibition of the antioxidant GPX4 or the Bcl-2 family member MCL-1 using small molecule compounds in combination with ABT-263 significantly increased the induction of apoptosis in some, but not all, previously insensitive senescent cells. We then asked if we could use BH3 profiling to measure differences in mitochondrial apoptotic priming in these models of cellular senescence and predict sensitivity to the senolytics ABT-263 or the combination of dasatinib and quercetin (D + Q). We found, despite being significantly less primed for apoptosis overall, the dependence of senescent mitochondria on BCL-XL was significantly correlated to senescent cell killing by both ABT-263 and D + Q, despite no significant changes in the gene or protein expression of BCL-XL. However, our data caution against broad classification of drugs as globally senolytic and instead provide impetus for context-specific senolytic targets and propose BH3 profiling as an effective predictive biomarker.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41418-024-01431-1DOI Listing

Publication Analysis

Top Keywords

cellular senescence
12
apoptotic priming
8
senolytic drug
8
senescence induction
8
senescent cells
8
bh3 profiling
8
d + q despite
8
senescence
7
senolytic
6
senescent
6

Similar Publications

People with HIV (PWH) are living longer and experiencing a greater burden of morbidity from non-AIDS-defining conditions. Chronically treated HIV disease is associated with ongoing systemic inflammation that contributes to the development of chronic conditions (eg, cardiovascular disease) and geriatric syndromes (eg, frailty). Apart from HIV disease, a progressive increase in systemic inflammation is a characteristic feature of biologic aging, a process described as "inflammaging.

View Article and Find Full Text PDF

Lineage tracing senescence in vivo shows not all senescent cells are created equal.

Dev Cell

January 2025

Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA. Electronic address:

Understanding the impact of senescence on disease is limited by the lack of tools to lineage label senescent cells. In a recent Cell issue, Zhao et al. create mouse models to genetically manipulate and trace p16 cells, identifying contrasting roles for senescent macrophages and endothelial cells (ECs) in liver fibrosis.

View Article and Find Full Text PDF

Senescent brain cell types in Alzheimer's disease: Pathological mechanisms and therapeutic opportunities.

Neurotherapeutics

January 2025

Department of Neurology, Washington University School of Medicine in St Louis, MO, USA; St Louis VA Medical Center, St Louis, MO, USA. Electronic address:

Cellular senescence is a cell state triggered by programmed physiological processes or cellular stress responses. Stress-induced senescent cells often acquire pathogenic traits, including a toxic secretome and resistance to apoptosis. When pathogenic senescent cells form faster than they are cleared by the immune system, they accumulate in tissues throughout the body and contribute to age-related diseases, including neurodegeneration.

View Article and Find Full Text PDF

Golgi abnormalities have been linked to aging and age-related diseases, yet the underlying causes and functional consequences remain poorly understood. This study identifies the interaction between age-associated zinc deficiency and Golgi stress as a critical factor in cellular aging. Senescent Golgi bodies from human fibroblasts show a fragmented Golgi structure, associated with a decreased interaction of the zinc-dependent Golgi-stacking protein complex Golgin45-GRASP55.

View Article and Find Full Text PDF

N4-acetylcytidine (ac4C) modification is a crucial RNA modification widely present in eukaryotic RNA. Previous studies have demonstrated that ac4C plays a pivotal role in viral infections. Despite numerous studies highlighting the strong correlation between ac4C modification and cancer progression, its detailed roles and molecular mechanisms in normal physiological processes and cancer progression remain incompletely understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!