Background: The pathogenesis of acute kidney injury (AKI) is not fully understood. Tax1-binding protein 1 (TAX1BP1) modulates inflammation and apoptosis through the NF-kB signaling pathway, however, its specific role in ischemic AKI remains unclear.
Methods: We injected a TAX1BP1 overexpression plasmid into the tail vein of male C57BL/6 mice, followed by clamping the bilateral renal arteries to induce AKI. Additionally, TAX1BP1 overexpression and silencing vectors were transfected into NRK52E cells to establish an in vitro hypoxia-reoxygenation model. Renal tubular necrosis was assessed using PAS and H&E staining. Expression levels of TAX1BP1, caspase-3, Bcl2, phosphorylated p65, and total p65 were measured through Western blot in both models. RT-PCR was used to evaluate KIM-1, NGAL, IL-6, and TNFα expression, while TUNEL staining detected apoptosis in renal tubular epithelial cells. RNA sequencing identified potential TAX1BP1 targets, which were validated via Western blot and RT-PCR.
Results: Our results indicate that TAX1BP1 significantly influences ischemic AKI by modulating apoptosis and inflammation in kidney tissues. In vitro studies confirmed its critical role in renal tubular epithelial cell apoptosis and inflammation through NF-kB activation, potentially via PMAIP1.
Conclusion: TAX1BP1 may protect renal tubular epithelial cells by targeting PMAIP1 through the NF-kB signaling pathway in ischemic AKI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00011-024-01976-4 | DOI Listing |
Int Immunopharmacol
January 2025
Department of Trauma Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China. Electronic address:
Background: Cisplatin-induced acute kidney injury (CKI) represents a severe renal dysfunction characterized by DNA damage and tubular injury. Fraxetin, derived from the Chinese herb Qinpi (Fraxinus bungeana A.DOC), is recognized for its neuroprotective effects and has been used for the prevention of various diseases.
View Article and Find Full Text PDFPhytother Res
January 2025
Laboratory of Immunology and Inflammation, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.
Renal fibrosis is the most common pathway for the development of end-stage renal disease (ESRD) in various kidney diseases. Currently, the treatment options for renal fibrosis are limited. Ferroptosis is iron-mediated lipid peroxidation, triggered mainly by iron deposition and ROS generation.
View Article and Find Full Text PDFClin Pharmacokinet
January 2025
Inria-Inserm COMPO Team, Centre Inria Sophia Antipolis-Méditerranée, CRCM, Inserm U1068-CNRS UMR7258-Aix-Marseille University UM105, Marseille, France.
Background: Cefotaxime is a widely prescribed cephalosporin antibiotic used to treat various infections. It is mainly eliminated unchanged by the kidney through tubular secretion and glomerular filtration. Therefore, a reduction of kidney function may increase exposure to the drug and induce toxic side effects.
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Nephrology, the Third Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Background: The pathogenesis of acute kidney injury (AKI) is not fully understood. Tax1-binding protein 1 (TAX1BP1) modulates inflammation and apoptosis through the NF-kB signaling pathway, however, its specific role in ischemic AKI remains unclear.
Methods: We injected a TAX1BP1 overexpression plasmid into the tail vein of male C57BL/6 mice, followed by clamping the bilateral renal arteries to induce AKI.
Preeclampsia (PE) is a prevalent and severe pregnancy complication that significantly impacts maternal and perinatal health. Epidemiological studies and animal experiments have demonstrated that PE adversely affects the cardiovascular and nervous systems of offspring, increasing their risk of hypertension and renal pathology. However, the mechanisms underlying this increased risk remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!