A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Using electrical resistivity techniques (ERT and SP) for nondestructive detection of seepage channels at the Leitai heritage site, China. | LitMetric

Seepage accelerates the weathering and destruction of cultural heritage sites, posing a major preservation challenge, while the concealed nature of seepage channels complicates their detection due to noninvasive requirements. In this study, we applied a comprehensive geophysical approach, integrating electrical resistivity tomography (ERT) and self-potential (SP) techniques, to image seepage channels within the Leitai heritage site. These potential seepage channels have already caused a collapse pit measuring 3.1 m × 2.7 m on the site's surface. We began with 2D ERT surveys, which were then combined for 3D inversion to reveal the resistivity structure of the site. Subsequently, SP data were extracted along typical survey lines using interpolation algorithms, and these were inverted to supplement and verify the resistivity structure. The results from both techniques were highly consistent, indicating the presence of internal channels within the site. This comprehensive geophysical approach provides critical insights and references for the subsequent restoration efforts of the Leitai heritage site, ensuring the protection and preservation of this culturally significant landmark. Moreover, the method proposed in this study can be easily applied to the preservation of similar cultural heritage sites elsewhere.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-025-85368-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704211PMC

Publication Analysis

Top Keywords

seepage channels
16
leitai heritage
12
heritage site
12
electrical resistivity
8
channels leitai
8
cultural heritage
8
heritage sites
8
comprehensive geophysical
8
geophysical approach
8
resistivity structure
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!