Osteoporosis (OP) is a prevalent age-related bone metabolic disease. Aging and mitochondrial dysfunction are involved in the onset and progression of OP, but the specific mechanisms have not been elucidated. The aim of this study was to identify novel potential biomarkers associated with aging and mitochondria in OP. In this study, based on GEO database, aging-related and mitochondria-related differentially expressed genes (AR&MRDEGs) were screened. The AR&MRDEGs were enriched in mitochondrial structure and function. Then, 6 key genes were identified by WGCNA and multiple machine learning, and a novel diagnostic model was constructed. The efficacy of diagnostic model was validated using external datasets. The results showed that diagnostic model had favorable diagnostic prediction ability. Next, key gene regulatory networks were constructed and single-gene GSEA analysis was performed. In addition, based on a single-cell dataset from OP, single-cell differentially expressed genes (scDEGs) were identified. The results revealed that aging-related and mitochondria-related genes (AR&MRGs) were enriched in the ERK pathway in tissue stem cells (TSCs), and in mitochondrial membrane potential depolarization in monocytes. Cellular communication analysis showed that TSCs were active, with numerous signaling interactions with monocytes, macrophages and immune cells. Finally, the expression of key gene was verified by quantitative real-time PCR (qRT-PCR). This study is expected to provide strategies for the diagnosis and treatment of OP targeting aging and mitochondria.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-024-84926-8DOI Listing

Publication Analysis

Top Keywords

aging mitochondria
12
diagnostic model
12
novel potential
8
potential biomarkers
8
biomarkers associated
8
associated aging
8
aging-related mitochondria-related
8
differentially expressed
8
expressed genes
8
key gene
8

Similar Publications

Unlabelled: Mitochondria are double membrane-bound organelles with pleiotropic roles in the cell, including energy production through aerobic respiration, calcium signaling, metabolism, proliferation, immune signaling, and apoptosis. Dysfunction of mitochondria is associated with numerous physiological consequences and drives various diseases, and is one of twelve biological hallmarks of aging, linked to aging pathology. There are many distinct changes that occur to the mitochondria during aging including changes in mitochondrial morphology, which can be used as a robust and simple readout of mitochondrial quality and function.

View Article and Find Full Text PDF

The role of mitochondria in aging, cell death, and tumor immunity.

Front Immunol

January 2025

Department of Medicine, University of Florida (UF) Health Cancer Center, University of Florida, Gainesville, FL, United States.

Mitochondria are essential double-membrane organelles with intricate structures and diverse functions within cells. Under normal physiological conditions, mitochondria regulate cellular metabolism and maintain energy homeostasis via the electron transport chain, mediate stem cell fate, and modulate reactive oxygen species production, playing a pivotal role in energy supply and lifespan extension. However, mitochondrial dysfunction can lead to various pathological changes, including cellular aging, necrosis, dysregulated tumor immunity, and the initiation and progression of cancer.

View Article and Find Full Text PDF

First Report of Causing Collar Rot of gilo in Ghana.

Plant Dis

January 2025

University of Ghana College of Basic and Applied Sciences, Biotechnology Centre, Accra, Greater Accra, Ghana;

African eggplant (Solanum aethiopicum gilo group) is a nutritious vegetable widely commercialized in Ghana. In the 2021 planting season (May-July), collar rot symptoms were observed on African eggplant on a farm at Domeabra, Legon, and Okumaning in the Central (N5° 48' 11″, W1° 26' 48″), Greater Accra (N5° 39' 34″, W0° 11' 34″) and Eastern (N6° 8' 34″, W0° 55' 59″) regions of Ghana, respectively. Disease incidence was 8-15% in the different farms.

View Article and Find Full Text PDF

Cellular senescence contributes to a variety of pathologies associated with aging and is implicated as a cellular state in which cancer cells can survive treatment. Reported senolytic drug treatments act through varying molecular mechanisms, but heterogeneous efficacy across the diverse contexts of cellular senescence indicates a need for predictive biomarkers of senolytic activity. Using multi-parametric analyses of commonly reported molecular features of the senescent phenotype, we assayed a variety of models, including malignant and nonmalignant cells, using several triggers of senescence induction and found little univariate predictive power of these traditional senescence markers to identify senolytic drug sensitivity.

View Article and Find Full Text PDF

Osteoporosis (OP) is a prevalent age-related bone metabolic disease. Aging and mitochondrial dysfunction are involved in the onset and progression of OP, but the specific mechanisms have not been elucidated. The aim of this study was to identify novel potential biomarkers associated with aging and mitochondria in OP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!