The consumption of sugar-sweetened beverages (SSBs) is associated with type 2 diabetes (T2D) and cardiovascular diseases (CVD). However, an updated and comprehensive assessment of the global burden attributable to SSBs remains scarce. Here we estimated SSB-attributable T2D and CVD burdens across 184 countries in 1990 and 2020 globally, regionally and nationally, incorporating data from the Global Dietary Database, jointly stratified by age, sex, educational attainment and urbanicity. In 2020, 2.2 million (95% uncertainty interval 2.0-2.3) new T2D cases and 1.2 million (95% uncertainty interval 1.1-1.3) new CVD cases were attributable to SSBs worldwide, representing 9.8% and 3.1%, respectively, of all incident cases. Globally, proportional SSB-attributable burdens were higher among men versus women, younger versus older adults, higher- versus lower-educated adults, and adults in urban versus rural areas. By world region, the highest SSB-attributable percentage burdens were in Latin America and the Caribbean (T2D: 24.4%; CVD: 11.3%) and sub-Saharan Africa (T2D: 21.5%; CVD: 10.5%). From 1990 to 2020, the largest proportional increases in SSB-attributable incident T2D and CVD cases were in sub-Saharan Africa (+8.8% and +4.4%, respectively). Our study highlights the countries and subpopulations most affected by cardiometabolic disease associated with SSB consumption, assisting in shaping effective policies and interventions to reduce these burdens globally.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41591-024-03345-4DOI Listing

Publication Analysis

Top Keywords

type diabetes
8
sugar-sweetened beverages
8
184 countries
8
attributable ssbs
8
t2d cvd
8
1990 2020
8
95% uncertainty
8
uncertainty interval
8
cvd cases
8
sub-saharan africa
8

Similar Publications

BNT162b2 mRNA vaccine elicits robust virus-specific antibodies but poor cross-protective CD8 memory T cell responses in adolescents with type 1 diabetes.

J Microbiol Immunol Infect

January 2025

Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan; Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan. Electronic address:

Background: COVID-19 mRNA vaccines have demonstrated 95 % efficacy in the general population. However, their immunogenicity in adolescents with Type 1 Diabetes (T1D), who exhibit weaken immune responses, remains insufficiently explored.

Methods: Longitudinal analysis of innate immune responses following PRR-agonists and BNT162b2 vaccine stimulations, along with S-specific antibody responses, memory T cell recall responses, and RNA-sequencing were assessed in eight T1D adolescents and 16 healthy controls at six different timepoints.

View Article and Find Full Text PDF

ISG15 increases the apoptosis of β cells in type 1 diabetes.

Cell Signal

January 2025

Department of Endocrinology, The Third Xiangya Hospital, Central South University, 410007 Changsha, Hunan, China. Electronic address:

Type 1 diabetes (T1D) is an autoimmune disease characterized by hyperglycemia caused by the destruction of insulin-producing β cells. Viral infection is an important environmental factor which is associated with the islet autoimmunity in genetically susceptible individuals. Loss of β-cells and triggering of insulitis following viral infection could result from several non-exclusive mechanisms.

View Article and Find Full Text PDF

Sodium arsenite induces islets β-cells apoptosis and dysfunction via SET-Rac1-mediated cytoskeleton disturbance.

Ecotoxicol Environ Saf

January 2025

Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China; Global Health Research Center, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China. Electronic address:

Sodium arsenite (NaAsO), the most common form of inorganic arsenic prevalent in the environment, has been closely linked to islet β-cell dysfunction, a critical pathological hallmark of type 2 diabetes (T2D). Even though apoptosis plays a pivotal role in arsenic-induced islet β-cell dysfunction, the explicit underlying mechanisms remain elusive. Here, we have identified that the SET-Rac1 signaling pathway is instrumental in the apoptosis and dysfunction of islet β-cells induced by NaAsO.

View Article and Find Full Text PDF

The chronic diabetic wounds represented by diabetes foot ulcers (DFUs) are a worldwide challenge. Excessive production of reactive oxygen species (ROS) and persistent inflammation caused by the impaired phenotype switch of macrophages from M1 to M2 during wound healing are the main culprits of non-healing diabetic wounds. Therefore, an injectable DMM/GelMA hydrogel as a promising wound dressing was designed to regulate the mitochondrial metabolism of macrophages via inhibiting succinate dehydrogenase (SDH) activity and to promote macrophage repolarization towards M2 type.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!