Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Accurate segmentation of retinal blood vessels from retinal images is crucial for detecting and diagnosing a wide range of ophthalmic diseases. Our retinal blood vessel segmentation algorithm enhances microfine vessel extraction, improves edge texture clarity, and normalizes vessel distribution. It stabilizes neural network training for complex retinal vascular features. Channel-aware self-attention (CAS) improves microfine vessel segmentation sensitivity. Heterogeneous adaptive pooling (HAP) facilitates accurate vessel edge segmentation through multi-scale feature extraction. The ghost fully convolutional Rectified Linear Unit (GFCReLU) module in the output convolutional layer captures deep semantic information for better vessel localization. Optimization training with Sparrow-Integrated Lion Optimization Algorithm (SLOA) employs sparrow stochastic updating and annealing to fine-tune parameters. The results of the experiments on our homemade dataset and three public datasets are as follows: Mean Intersection over Union (MIoU) of 80.61%, 76.14%, 76.90%, 74.11%; Dice coefficients of 78.97%, 72.51%, 72.84%, 68.93%; and accuracies of 94.83%, 95.74%, 96.67%, 95.81% respectively. The model effectively segments retinal blood vessels, offering potential for diagnosing ophthalmic diseases. Our dataset is available at https://github.com/ZhouGuoXiong/Retinal-blood-vessels-for-segmentation .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41598-024-84901-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!