In a quest to innovate biologically active molecules, the benzoylation of 4,6-dimethylpyrimidine-2-thiol hydrochloride (1) with benzoyl chloride derivatives was employed to produce a series of pyrimidine benzothioate derivatives (2-5). Subsequent sulfoxidation of these derivatives (2-5) using hydrogen peroxide and glacial acetic acid yielded a diverse array of pyrimidine sulfonyl methanone derivatives (6-9). In parallel, the sulfoxidation of pyrimidine sulfonothioates (10-12) yielded sulfonyl sulfonyl pyrimidines (13-15), originating from the condensation of compound 1 with sulfonyl chloride derivatives. The newly synthesized compounds underwent characterization via FT-IR, NMR, mass spectrometry, and elemental analyses. Biological screenings unveiled interesting properties: compounds 1 and 6 exhibited significant antimicrobial potency against S. epidermidis and S. haemolyticus, whereas compound 11 showed distinct insensitivity. Excitingly, compounds 12 and 6 showcased robust antioxidant activity by efficiently scavenging DPPH radical, underscoring their potential in oxidative stress mitigation. Notably, compounds 10 and 12 displayed promising anti-tumor effects, with compound 12 demonstrating superior efficacy against the MCF-7 breast cancer cell line compared to compound 10. The study revealed a spectrum of biological activities across the synthesized derivatives, with modifications often resulting in diminished bioactivity compared to the parent compound 1. These findings shed light on the intricate relationship between chemical modifications and biological properties, offering valuable insights for future drug discovery endeavors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41598-024-83050-x | DOI Listing |
Sci Rep
January 2025
Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
In a quest to innovate biologically active molecules, the benzoylation of 4,6-dimethylpyrimidine-2-thiol hydrochloride (1) with benzoyl chloride derivatives was employed to produce a series of pyrimidine benzothioate derivatives (2-5). Subsequent sulfoxidation of these derivatives (2-5) using hydrogen peroxide and glacial acetic acid yielded a diverse array of pyrimidine sulfonyl methanone derivatives (6-9). In parallel, the sulfoxidation of pyrimidine sulfonothioates (10-12) yielded sulfonyl sulfonyl pyrimidines (13-15), originating from the condensation of compound 1 with sulfonyl chloride derivatives.
View Article and Find Full Text PDFPLoS One
November 2024
Stem Cells & Reprogramming Laboratory, Department of Biology, Faculty of Science, Toho University, Chiba, Japan.
Primary hepatocytes are widely utilized for investigating drug efficacy and toxicity, yet variations between batches and limited proliferation capacity present significant challenges. HepaRG cells are versatile cells, capable of maintaining an undifferentiated state and differentiating through dimethyl sulfoxide treatment, allowing for molecular analysis of hepatocyte plasticity. To elucidate the underlying molecular mechanisms of HepaRG cell plasticity, we used CYP3A4G/7R HepaRG cells engineered to express DsRed under the control of the fetus-specific CYP3A7 gene and EGFP under the adult-specific CYP3A4 gene promoter.
View Article and Find Full Text PDFJ Virol
December 2024
Institute of Virology, Freie Universität Berlin, Berlin, Germany.
Unlabelled: Despite the availability of bacterial artificial chromosome (BAC) systems for human herpesvirus 6A (HHV-6A), reconstitution of infectious viruses is very challenging and time consuming. In this study, we developed approaches to improve the reconstitution process and enhance virus replication to overcome these technical challenges. Using dimethyl sulfoxide and exonuclease V, we significantly increased the efficiency of BAC transfections into JJHan T cells.
View Article and Find Full Text PDFMetabolites
October 2024
School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
Porcine models are increasingly recognized for their similarities to humans and have been utilized in disease modeling and organ grafting research. While extensive metabolomics studies have been conducted in swine, primarily focusing on conventional cohorts or specific animal models, the composition and functions of fecal metabolites in pigs across different age groups-particularly in the elderly-remain inadequately understood. In this study, an untargeted metabolomics approach was employed to analyze the fecal metabolomes of pigs at three distinct age stages: young (one year), middle-aged (four years), and elderly (eight years).
View Article and Find Full Text PDFJCI Insight
October 2024
Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Ataxia telangiectasia and Rad3-related protein (ATR) is a key DNA damage response protein that facilitates DNA damage repair and regulates cell cycle progression. As such, ATR is an important component of the cellular response to radiation, particularly in cancer cells, which show altered DNA damage response and aberrant cell cycle checkpoints. Therefore, ATR's pharmacological inhibition could be an effective radiosensitization strategy to improve radiotherapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!