De-regulated protein expression contributes to tumor growth and progression in medulloblastoma (MB), the most common malignant brain tumor in children. MB is associated with impaired differentiation of specific neural progenitors, suggesting that the deregulation of proteins involved in neural physiology could contribute to the transformed phenotype in MB. Calsynthenin 1 (CLSTN1) is a neuronal protein involved in cell-cell interaction, vesicle trafficking, and synaptic signaling. We previously identified CLSTN1 as a putative target of the pro-invasive kinase MAP4K4, which we found to reduce CLSTN1 surface expression. Herein, we explored the expression and functional significance of CLSTN1 in MB. We found that CLSTN1 expression is decreased in primary MB tumors compared to tumor-free cerebellum or brain tissues. CLSTN1 is expressed in laboratory-established MB cell lines, where it localized to the plasma membrane, intracellular vesicular structures, and regions of cell-cell contact. The reduction of CLSTN1 expression significantly increased growth factor-driven invasiveness. Pharmacological inhibition of pro-migratory MAP4 kinases caused increased CLSTN1 expression and CLSTN1 accumulation in cell-cell contacts. Co-culture of tumor cells with astrocytes increased CLSTN1 localization in cell-cell contacts, which was further enhanced by MAP4K inhibition. Our study revealed a repressive function of CLSTN1 in growth-factor-driven invasiveness in MB, identified MAP4 kinases as repressors of CLSTN1 recruitment to cell-cell contacts, and points towards CLSTN1 implication in the kinase-controlled regulation of tumor-microenvironment interaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41598-024-84753-x | DOI Listing |
Sci Rep
January 2025
Children's Research Center, Division of Oncology, University Children's Hospital Zürich, Zürich, Switzerland.
De-regulated protein expression contributes to tumor growth and progression in medulloblastoma (MB), the most common malignant brain tumor in children. MB is associated with impaired differentiation of specific neural progenitors, suggesting that the deregulation of proteins involved in neural physiology could contribute to the transformed phenotype in MB. Calsynthenin 1 (CLSTN1) is a neuronal protein involved in cell-cell interaction, vesicle trafficking, and synaptic signaling.
View Article and Find Full Text PDFSynapse
September 2024
Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Int J Mol Sci
July 2024
Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy.
Alzheimer's disease (AD) and Frontotemporal lobar degeneration (FTLD) represent the most common forms of neurodegenerative dementias with a highly phenotypic variability. Herein, we investigated the role of genetic variants related to the immune system and inflammation as genetic modulators in AD and related dementias. In patients with sporadic AD/FTLD (n = 300) and / mutation carriers (n = 80), we performed a targeted sequencing of 50 genes belonging to the immune system and inflammation, selected based on their high expression in brain regions and low tolerance to genetic variation.
View Article and Find Full Text PDFProteomics
October 2024
Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
The tooth serves as an exemplary model for developmental studies, encompassing epithelial-mesenchymal transition and cell differentiation. The essential factors and pathways identified in tooth development will help understand the natural development process and the malformations of mineralized tissues such as skeleton. The time-dependent proteomic changes were investigated through the proteomics of healthy human molars during embryonic stages, ranging from the cap-to-early bell stage.
View Article and Find Full Text PDFJ Biol Chem
March 2024
Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
Human satellite II (HSATII), composed of tandem repeats in pericentromeric regions, is aberrantly transcribed in epithelial cancers, particularly pancreatic cancer. Dysregulation of repetitive elements in cancer tissues can facilitate incidental dsRNA formation; however, it remains controversial whether dsRNAs play tumor-promoting or tumor-suppressing roles during cancer progression. Therefore, we focused on the double-stranded formation of HSATII RNA and explored its molecular function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!