Functional analysis of non-coding variants associated with congenital disorders remains challenging due to the lack of efficient in vivo models. Here we introduce dual-enSERT, a robust Cas9-based two-color fluorescent reporter system which enables rapid, quantitative comparison of enhancer allele activities in live mice in less than two weeks. We use this technology to examine and measure the gain- and loss-of-function effects of enhancer variants previously linked to limb polydactyly, autism spectrum disorder, and craniofacial malformation. By combining dual-enSERT with single-cell transcriptomics, we characterise gene expression in cells where the enhancer is normally and ectopically active, revealing candidate pathways that may lead to enhancer misregulation. Finally, we demonstrate the widespread utility of dual-enSERT by testing the effects of fifteen previously uncharacterised rare and common non-coding variants linked to neurodevelopmental disorders. In doing so we identify variants that reproducibly alter the in vivo activity of OTX2 and MIR9-2 brain enhancers, implicating them in autism. Dual-enSERT thus allows researchers to go from identifying candidate enhancer variants to analysis of comparative enhancer activity in live embryos in under two weeks.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-024-55500-7DOI Listing

Publication Analysis

Top Keywords

rapid quantitative
8
activity live
8
live mice
8
non-coding variants
8
enhancer variants
8
variants linked
8
enhancer
7
variants
5
quantitative functional
4
functional interrogation
4

Similar Publications

Validation of lactate and glucose in cerebrospinal fluid (CSF) on a Radiometer blood gas analyzer ABL90 Flex plus.

Clin Biochem

January 2025

Pathology and Laboratory Medicine Program, Health Sciences Centre, St. John's, Newfoundland and Labrador, Canada; Memorial University of Newfoundland, Health Sciences Centre, St. John's, Newfoundland and Labrador, Canada. Electronic address:

Purpose: Rapid determination of cerebrospinal fluid. (CSF) glucose and lactate is required by emergency rooms and intensive care units. Long turnaround time (TAT) on test results negatively impacts timely diagnosis and treatment of neurological infections like meningitis.

View Article and Find Full Text PDF

Alternariol (AOH) has attracted much attention as an emerging toxin in edible herbs that can pose potential carcinogenic risks to human. However, the rapid detection of AOH to ensure food safety remains a challenge. Here, a CRISPR-Cas12a-mediated aptamer-based sensor (aptasensor) was proposed for the sensitive quantification of AOH by using a personal glucose meter.

View Article and Find Full Text PDF

Ultrasound localization microscopy (ULM) enables microvascular imaging at spatial resolutions beyond the acoustic diffraction limit, offering significant clinical potentials. However, ULM performance relies heavily on microbubble (MB) signal sparsity, the number of detected MBs, and signal-to-noise ratio (SNR), all of which vary in clinical scenarios involving bolus MB injections. These sources of variations underscore the need to optimize MB dosage, data acquisition timing, and imaging settings in order to standardize and optimize ULM of microvasculature.

View Article and Find Full Text PDF

Trustworthiness of a machine learning early warning model in medical and surgical inpatients.

JAMIA Open

February 2025

Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN 55905, United States.

Objectives: In the general hospital wards, machine learning (ML)-based early warning systems (EWSs) can identify patients at risk of deterioration to facilitate rescue interventions. We assess subpopulation performance of a ML-based EWS on medical and surgical adult patients admitted to general hospital wards.

Materials And Methods: We assessed the scores of an EWS integrated into the electronic health record and calculated every 15 minutes to predict a composite adverse event (AE): all-cause mortality, transfer to intensive care, cardiac arrest, or rapid response team evaluation.

View Article and Find Full Text PDF

Unlabelled: Eastern equine encephalitis virus (EEEV) is an arthropod-borne, positive-sense RNA alphavirus posing a substantial threat to public health. Unlike similar viruses such as SARS-CoV-2, EEEV replicates efficiently in neurons, producing progeny viral particles as soon as 3-4 hours post-infection. EEEV infection, which can cause severe encephalitis with a human mortality rate surpassing 30%, has no licensed, targeted therapies, leaving patients to rely on supportive care.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!