Plasma biomarkers have great potential in the screening, diagnosis, and monitoring of Alzheimer's disease (AD). However, findings on their associations with cerebral perfusion and structural changes are inconclusive. We examined both cross-sectional and longitudinal associations between plasma biomarkers and cerebral blood flow (CBF), gray matter (GM) volume, and white matter (WM) integrity. Forty-eight AD patients whose diagnosis was supported by amyloid-β (Aβ) PET received measurement of plasma biomarkers with a single molecular array, including Aβ42, phosphorylated tau 181 (P-tau181), neurofilament light (NfL), total tau (T-tau), and glial fibrillary acidic protein (GFAP), and both baseline and one-year follow-up magnetic resonance imaging, including pseudo-continuous arterial spin labeling, T1-weighted imaging, and diffusion tensor imaging. Correlations were found between regional CBF and several plasma biomarkers, with Aβ42 showing the strongest correlation with CBF in the left inferior temporal gyrus (r = 0.507, p = 0.001). Plasma P-tau181 and GFAP levels were correlated with GM volume in the posterior cingulate gyrus and the bilateral hippocampus and right middle temporal gyrus, respectively. Decreased CBF and GM volume in regions vulnerable to AD, such as the posterior cingulate gyrus, inferior parietal lobule and hippocampus, could be predicted by the levels of specific plasma biomarkers. Most biomarkers, except Aβ42, showed extensive correlations with longitudinal WM disruption. Plasma biomarkers exhibited varied correlations with brain perfusion, GM volume, and WM integrity and predicted their longitudinal changes in AD patients, suggesting their potential to reflect functional and structural changes and to monitor pathophysiological progression in the brain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41398-024-03220-3 | DOI Listing |
Neurotherapeutics
January 2025
Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA. Electronic address:
Extracorporeal membrane oxygenation (ECMO) is a technique used to support severe cardiopulmonary failure. Its potential life-saving benefits are tempered by the significant risk for acute brain injury (ABI), from both primary pathophysiologic factors and ECMO-related complications through central nervous system cellular injury, blood-brain barrier dysfunction (BBB), systemic inflammation and neuroinflammation, and coagulopathy. Plasma biomarkers are an emerging tool used to stratify risk for and diagnose ABI, and prognosticate neurofunctional outcomes.
View Article and Find Full Text PDFNanomedicine (Lond)
January 2025
Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.
Aim: To develop pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL) of CD40a to enhance anti-tumor activity in pancreatic cancer while reducing systemic toxicity.
Materials And Methods: A small library of nanoliposomes (NL) with various lipid compositions were synthesized to prepare pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL). Physical and functional characterization of pHTANL-CD40a was performed via dynamic light scattering (DLS), Transmission Electron Microscopy (TEM), confocal microscopy, and flow cytometry.
Expert Rev Proteomics
January 2025
Skolkovo Institute of Science and Technology, Moscow, Russian Federation.
Introduction: Identifying early risks of developing Alzheimer's disease (AD) is a major challenge as the number of patients with AD steadily increases and requires innovative solutions. Current molecular diagnostic modalities, such as cerebrospinal fluid (CSF) testing and positron emission tomography (PET) imaging, exhibit limitations in their applicability for large-scale screening. In recent years, there has been a marked shift toward the development of blood plasma-based diagnostic tests, which offer a more accessible and clinically viable alternative for widespread use.
View Article and Find Full Text PDFScand J Gastroenterol
January 2025
Norwegian PSC Research Centre, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway.
Objectives: Indications of mitochondrial dysfunction are commonly seen in liver diseases, but data are scarce in primary sclerosing cholangitis (PSC). Analyzing circulating and liver-resident molecules indirectly reflecting mitochondrial dysfunction, we aimed to comprehensively characterize this deficit in PSC, and whether this was PSC specific or associated with cholestasis.
Materials And Methods: We retrospectively included plasma from 191 non-transplant patients with large-duct PSC and 100 healthy controls and explanted liver tissue extracts from 24 PSC patients and 18 non-cholestatic liver disease controls.
Am J Physiol Cell Physiol
January 2025
Department of Physiology (Cellular Physiology Research Group),Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, 10003-Caceres, Spain.
Filamin A (FLNA) is an actin-binding protein that has been reported to interact with STIM1 modulating the activation of Orai1 channels. Cleaving of FLNA by calpain leads to a C-terminal fragment that is involved in a variety of functional and pathological events, including pro-oncogenic activity in different types of cancer. Here we show that full-length FLNA is downregulated in samples from colon cancer patients as well as in the adenocarcinoma cell line HT-29.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!