Current Progress and Future Directions in Non-Alzheimer's Disease Tau PET Tracers.

ACS Chem Neurosci

Research Center for Accelerator and Radioisotope Science, Tohoku University, Sendai, Miyagi 980-0845, Japan.

Published: January 2025

Alzheimer's disease (AD) and non-AD tauopathies are dominant public health issues driven by several factors, especially in the aging population. The discovery of first-generation radiotracers, including [F]FDDNP, [C]PBB3, [F]flortaucipir, and the [F]THK series, for the in vivo detection of tauopathies has marked a significant breakthrough in the fields of neuroscience and radiopharmaceuticals, creating a robust new category of labeled compounds: tau positron emission tomography (PET) tracers. Subsequently, other tau PET tracers with improved binding properties have been developed using various chemical scaffolds to target the three-repeat/four-repeat (3R/4R) tau folds in AD. In 2020, [F]flortaucipir was approved by the U.S. Food and Drug Administration for PET imaging of tau pathology in adult patients with cognitive deficits undergoing evaluation for AD. Despite remarkable progress in the development of AD tau PET tracers, imaging agents for rare non-AD tauopathies (4R tauopathies [predominantly expressing a 4R tau isoform], involved in progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease, and globular glial tauopathy, and 3R tauopathies [predominantly expressing a 3R tau isoform], such as Pick's disease) remain substantially underdeveloped. In this review, we discuss recent progress in tau PET tracer development, with particular emphasis on clinically validated tracers for AD and their potential use for non-AD tauopathies. Additionally, we highlight the critical need for further development of tau PET tracers specifically designed for non-AD tauopathies, an area that remains significantly underexplored despite its importance in advancing the understanding and diagnosis of these disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acschemneuro.4c00319DOI Listing

Publication Analysis

Top Keywords

tau pet
20
pet tracers
20
non-ad tauopathies
16
tau
10
development tau
8
tauopathies [predominantly
8
[predominantly expressing
8
expressing tau
8
tau isoform]
8
pet
7

Similar Publications

Porous Materials for Early Diagnosis of Neurodegenerative Diseases.

Adv Healthc Mater

January 2025

Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, 600077, India.

Neurodegenerative diseases, particularly Alzheimer's disease and Parkinson's disease, present formidable challenges in modern medicine due to their complex pathologies and the absence of curative treatments. Despite advances in symptomatic management, early diagnosis remains essential for mitigating disease progression and improving patient outcomes. Traditional diagnostic methods, such as MRI, PET, and cerebrospinal fluid biomarker analysis, are often inadequate for the early detection of these diseases.

View Article and Find Full Text PDF

Plasma biomarkers have great potential in the screening, diagnosis, and monitoring of Alzheimer's disease (AD). However, findings on their associations with cerebral perfusion and structural changes are inconclusive. We examined both cross-sectional and longitudinal associations between plasma biomarkers and cerebral blood flow (CBF), gray matter (GM) volume, and white matter (WM) integrity.

View Article and Find Full Text PDF

Current Progress and Future Directions in Non-Alzheimer's Disease Tau PET Tracers.

ACS Chem Neurosci

January 2025

Research Center for Accelerator and Radioisotope Science, Tohoku University, Sendai, Miyagi 980-0845, Japan.

Alzheimer's disease (AD) and non-AD tauopathies are dominant public health issues driven by several factors, especially in the aging population. The discovery of first-generation radiotracers, including [F]FDDNP, [C]PBB3, [F]flortaucipir, and the [F]THK series, for the in vivo detection of tauopathies has marked a significant breakthrough in the fields of neuroscience and radiopharmaceuticals, creating a robust new category of labeled compounds: tau positron emission tomography (PET) tracers. Subsequently, other tau PET tracers with improved binding properties have been developed using various chemical scaffolds to target the three-repeat/four-repeat (3R/4R) tau folds in AD.

View Article and Find Full Text PDF

Introduction: Alzheimer's disease is partially characterized by the progressive accumulation of aggregated tau-containing neurofibrillary tangles. Although the association between accumulated tau, neurodegeneration, and cognitive decline is critical for disease understanding and clinical trial design, we still lack robust tools to predict individualized trajectories of tau accumulation. Our objective was to assess whether brain imaging biomarkers of flortaucipir-positron emission tomography (PET), in combination with clinical and genomic measures, could predict future pathological tau accumulation.

View Article and Find Full Text PDF

Alzheimer disease (AD) is characterized by the accumulation of tau neurofibrillary tangles that can be labeled with PET tracers. Multiple tau PET tracers have been used in clinical studies, including [F]GTP1, [F]PI-2620, and [F]MK-6240. Standardized harmonization scales for comparing tau PET signals across tracers are currently under development and can be informed by comparisons of signals between tracers in both target and off-target regions of the brain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!