Background: To date, a growing body of evidence suggests that unfolded protein response (UPR) sensors play a vital role in carcinogenesis. However, it remains unclear whether they are involved in pancreatic ductal adenocarcinoma (PDAC) and how they relate to clinical outcomes. This study aims to investigate the biological function and mechanism of how a novel UPR sensor, CREB3L1 works in PDAC and further evaluate its clinical application prospect.

Methods: We tested UPR signaling including CREB3L1 in Thapsigargin-treated PDAC cells. Subsequently, we defined CREB3L1 expression and further analyzed its expression with clinical characteristics in PDAC. Then, we established gene-modified cells to determine whether CREB3L1 functions in cell proliferation and migration capacity. Besides, we constructed subcutaneously and orthotopically transplanted mice models to verify their progrowing function and pulmonary metastasis models to prove their proinvasion role. What's more, RNAseq, qPCR, Western blotting, immunohistochemistry and multicolor flow cytometry experiments were used to explore the mechanism of how CREB3L1 worked in PDAC. Lastly, CREB3L1 expression correlation with PDAC immunotherapy outcome and immune cell signatures were explored in the patients with advanced PDAC who received PD-1 antibody therapy.

Results: We first confirmed CREB3L1 could be induced by endoplasmic reticulum stressor and found its aberrant activation was associated with poorer overall survival in PDAC patients indicating the protumor function of the new UPR sensor. Functionally, we confirmed CREB3L1 contributing to PDAC malignant progression including growth and metastasis by multiple in in vitro and in vivo models. Mechanistically, CREB3L1 upregulated COL3A1 and promoted dense stroma formation for facilitating PDAC and knocking down COL3A1 disrupted CREB3L1 protumor function. Furthermore, CREB3L1-induced TAM polarization toward an M2 phenotype and reduced the infiltration of CD8 T cells. Clinically, CREB3L1 correlated with immune cell signatures as well as immune checkpoint blockade (ICB) treatment response and outcome that CREB3L1aberrant activation indicated poorer efficacy and worse prognosis than the low in PDAC which might empower clinical decision.

Conclusions: Collectively, this study revealed CREB3L1 facilitated PDAC progression, shaped an immune exclude tumor microenvironment and distinguished therapy response and outcome of ICB therapy indicating CREB3L1 could be a promising novel molecular target and biomarker for PDAC treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1136/jitc-2024-010029DOI Listing

Publication Analysis

Top Keywords

creb3l1
14
pdac
13
upr sensor
8
creb3l1 expression
8
immune cell
8
cell signatures
8
confirmed creb3l1
8
protumor function
8
response outcome
8
creb3l1 facilitates
4

Similar Publications

CREB3L1 facilitates pancreatic tumor progression and reprograms intratumoral tumor-associated macrophages to shape an immunotherapy-resistance microenvironment.

J Immunother Cancer

January 2025

State Key Laboratory of Systems Medicine for Cancer of Oncology Department and Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

Background: To date, a growing body of evidence suggests that unfolded protein response (UPR) sensors play a vital role in carcinogenesis. However, it remains unclear whether they are involved in pancreatic ductal adenocarcinoma (PDAC) and how they relate to clinical outcomes. This study aims to investigate the biological function and mechanism of how a novel UPR sensor, CREB3L1 works in PDAC and further evaluate its clinical application prospect.

View Article and Find Full Text PDF

Sclerosing epithelioid fibrosarcoma (SEF) was originally described as a peculiar variant of fibrosarcoma in 1995. Subsequent studies showed that conventional SEF was associated with both immunohistochemical expression of MUC4 and EWSR1/FUS gene rearrangements with CREB3L1 as the predominant fusion partner. Since then, a distinct group of fibrous tumors characterized by YAP1::KMT2A and KMT2A::YAP1 gene rearrangements and SEF-like morphology has been described.

View Article and Find Full Text PDF

Gene module reconstruction identifies cellular differentiation processes and the regulatory logic of specialized secretion in zebrafish.

Dev Cell

November 2024

Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Biozentrum, University of Basel, Basel 4056, Switzerland; Allen Discovery Center for Cell Lineage Tracing, University of Washington, Seattle, WA 98195, USA. Electronic address:

During differentiation, cells become structurally and functionally specialized, but comprehensive views of the underlying remodeling processes are elusive. Here, we leverage single-cell RNA sequencing (scRNA-seq) developmental trajectories to reconstruct differentiation using two secretory tissues as models-the zebrafish notochord and hatching gland. First, we integrated expression and functional similarities to identify gene modules, revealing dozens of modules representing known and newly associated differentiation processes and their dynamics.

View Article and Find Full Text PDF

Background: Mucinous adenocarcinoma (MAC) is a peculiar histological subtype of colorectal cancer (CRC) with distinct medical, disease-related, and genetic characteristics. The prognosis of MAC is generally poorer less favorable compared to non-specific adenocarcinoma (AC), but the prognostic indicator of MAC is rare. Therefore, this study aims to identify potential biomarkers and construct a prognostic model to better predict patient outcomes in MAC.

View Article and Find Full Text PDF

Chromatin interaction maps identify oncogenic targets of enhancer duplications in cancer.

Genome Res

October 2024

State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China;

As a major type of structural variants, tandem duplication plays a critical role in tumorigenesis by increasing oncogene dosage. Recent work has revealed that noncoding enhancers are also affected by duplications leading to the activation of oncogenes that are inside or outside of the duplicated regions. However, the prevalence of enhancer duplication and the identity of their target genes remains largely unknown in the cancer genome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!