A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Semisupervised Contrastive Learning for Bioactivity Prediction Using Cell Painting Image Data. | LitMetric

Semisupervised Contrastive Learning for Bioactivity Prediction Using Cell Painting Image Data.

J Chem Inf Model

Research Unit Structural Chemistry and Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin 13125, Germany.

Published: January 2025

Morphological profiling has recently demonstrated remarkable potential for identifying the biological activities of small molecules. Alongside the fully supervised and self-supervised machine learning methods recently proposed for bioactivity prediction from Cell Painting image data, we introduce here a semisupervised contrastive (SemiSupCon) learning approach. This approach combines the strengths of using biological annotations in supervised contrastive learning and leveraging large unannotated image data sets with self-supervised contrastive learning. SemiSupCon enhances downstream prediction performance of classifying MeSH pharmacological classifications from PubChem, as well as mode of action and biological target annotations from the Drug Repurposing Hub across two publicly available Cell Painting data sets. Notably, our approach has effectively predicted the biological activities of several unannotated compounds, and these findings were validated through literature searches. This demonstrates that our approach can potentially expedite the exploration of biological activity based on Cell Painting image data with minimal human intervention.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jcim.4c00835DOI Listing

Publication Analysis

Top Keywords

cell painting
16
image data
16
contrastive learning
12
painting image
12
semisupervised contrastive
8
bioactivity prediction
8
prediction cell
8
biological activities
8
data sets
8
learning
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!