BOLD response can be fitted using the population receptive field (PRF) model to reveal how visual input is represented on the cortex (Dumoulin and Wandell, 2008). Fitting the PRF model costs considerable time, often requiring days to analyze BOLD signals for a small cohort of subjects. We introduce the qPRF ("quick PRF"), a system for accelerated PRF modeling that reduced the computation time by a factor ¿1,000 without losing goodness-of-fit when compared to another widely available PRF modeling package (Kay et al., 2013) on a benchmark of data from the Human Connectome Project (HCP;Van Essen et al. (2013) The system achieves this level of acceleration by pre-computing a tree-like data structure, which it rapidly searches during the fitting step for an optimal parameter combination. We tested the method on a constrained four-parameter version of the PRF model (Strategy 1 herein) and an unconstrained five-parameter PRF model, which the qPRF fitted at comparable speed (Strategy 2). We show how an additional search step can guarantee optimality of qPRF solutions with little additional time cost (Strategy 3). To assess the quality of qPRF solutions, we compared our Strategy 1 solutions to those provided by Benson et al. (2018) who performed a similar four-parameter fit. Both hemispheres of the 181 subjects in the HCP dataset (a total of 10,753,572 vertices, each with a unique BOLD time series of 1800 frames) were analyzed by qPRF in 12.82 h on an ordinary CPU. The absolute difference in R achieved by the qPRF compared to Benson et al. (2018) was negligible, with a median of 0.025% (R units being between 0% and 100%). In general, the qPRF yielded a slightly better fitting solution, achieving a greater R on 70.2% of vertices. We also assess the qPRF method's model-recovery ability using a simulated dataset. The qPRF may facilitate the development and use of more elaborate models based on the PRF framework and may pave the way for novel clinical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2024.120994 | DOI Listing |
Neuroimage
January 2025
Division of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Pudong New District, 200124, Shanghai, China; Center for Neural Science, New York University, 4 Washington Place, NY, 10003, NY, USA; NYU-ECNU Institute of Brain and Cognitive Science, 3663 Zhongshan Road North, Putuo District, 200062, Shanghai, China. Electronic address:
BOLD response can be fitted using the population receptive field (PRF) model to reveal how visual input is represented on the cortex (Dumoulin and Wandell, 2008). Fitting the PRF model costs considerable time, often requiring days to analyze BOLD signals for a small cohort of subjects. We introduce the qPRF ("quick PRF"), a system for accelerated PRF modeling that reduced the computation time by a factor ¿1,000 without losing goodness-of-fit when compared to another widely available PRF modeling package (Kay et al.
View Article and Find Full Text PDFCureus
December 2024
Periodontology, Subharti Dental College, Swami Vivekanand Subharti University, Meerut, IND.
Sci Rep
December 2024
Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.
This study investigated the impact of multiple nerve block methods (local anesthesia, conventional radiofrequency thermocoagulation [CRF], and pulsed radiofrequency [PRF]) on thermoregulation. Focusing on hypothalamic function, the effects of local anesthesia, CRF, and PRF on central and peripheral temperatures were analyzed and compared. Our findings revealed that all three nerve block groups cause a decrease in central temperature, with the CRF group exhibiting the most pronounced effect.
View Article and Find Full Text PDFClin Cosmet Investig Dermatol
December 2024
Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People's Republic of China.
Background: Multiple methods have been used to treat hypertrophic scarring; however, an optimal treatment method remains to be established. We aimed to research and compare the effects of cell-free fat extract (CEFFE) and platelet-rich fibrin (PRF) on hypertrophic scar formation based on histomorphological analysis in this study.
Methods: Twelve rabbits were divided into four groups randomly.
medRxiv
December 2024
The Baruch S. Blumberg Research Institute, Doylestown, PA, 18902, USA.
Background & Aims: Integrated HBV DNA (iDNA) plays a critical role in HBV pathogenesis, particularly in predicting treatment response and HCC. This study aimed to use an HBV hybridization-capture next-generation sequencing (HBV-NGS) assay to detect HBV-host junction sequences (HBV-JS) in a sensitive nonbiased manner to detect and estimate the iDNA fraction in tissue biopsies and HBV genetics by liquid biopsy.
Methods: HBV DNA from plasmid monomers, HBV-HCC cell line (SNU398, Hep3B, and PLC/PRF/5), tissue biopsies of patients with serum HBV DNA <4 log IU/ml, and matched urine and plasma of HBV patients were assessed by HBV-NGS.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!