Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Antibiotics and antibiotic resistance genes (ARGs) are severe refractory pollutants in water. However, the effect of an intermittent electrical stimulation on the removal of antibiotics and ARGs from saline wastewater remains unclear. An anaerobic-aerobic-coupled upflow bioelectrochemical reactors (AO-UBERs) was used to treat tetracycline (TC) and quinolone (QN) in saline wastewater. In an aerobic cathode-anaerobic anode reactor at an intermittent voltage of 0.9 V, antibiotic wastewater with a salinity of 15 g/L was treated. The removal rates of oxytetracycline (OTC), tetracycline (TET), norfloxacin (NOR), and ciprofloxacin (CIP) were 29.30%, 35.14%, 15.49%, and 15.84% higher, respectively, than those in reactors without voltage application. Compared with non-saline wastewater, the removal of TCs and QN from saline wastewater was improved significantly by intermittent electrical stimulation. The contribution of the anaerobic region was significantly higher than that of the aerobic region. Intermittent electrical stimulation enriches and degrades Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Dysgonomonas, Hydrogenophaga, Terrimonas, and Methyloversatilis related functional microorganisms. The anaerobic anode reactor with an aerobic cathode was advantageous for the removal of ARGs in general. However, it showed enrichment for certain targeted genes. Therefore, AO-UBERs is an effective method for antibiotic removal. However, its effect on the removal of ARGs needs further investigation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2025.120772 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!