A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hepatic and intestinal insights into the molecular mechanisms of dietary Antarctic krill-induced body color differentiation in Plectropomus leopardus. | LitMetric

Hepatic and intestinal insights into the molecular mechanisms of dietary Antarctic krill-induced body color differentiation in Plectropomus leopardus.

Genomics

MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China; Southern Marine Science and Engineer Guangdong Laboratory, Guangzhou 511458, China. Electronic address:

Published: January 2025

Antarctic krill (Euphausia superba), which is rich in astaxanthin, has been widely utilized as a dietary supplement in fish aquaculture. Our study was to feed juvenile leopard coral grouper (Plectropomus leopardus) a diet containing 50 % Antarctic krill, revealing significant body color differentiation between a reddened group (BKR) and a non-reddened group (BKB), followed by comparative analysis with the control group (BCon) without krill supplementation. Histological analysis and carotenoid content in the liver and intestine were differentially regulated in color-differentiated individuals. Transcriptomic profiling revealed differentially expressed genes (DEGs) among color-differentiated individuals, with up-regulated DEGs in BKR being linked to carotenoid uptake, metabolism, and transport. Key DEGs (acss2l, insig1, fabp7, and bco1) were validated through qRT-PCR and FISH. Additionally, WGCNA identified potential gene regulatory networks in the liver and intestine that were responsive to the body coloration. This study elucidates the molecular mechanisms by which Antarctic krill influences carotenoid-based body coloration, offering new insights into the application of Antarctic krill in aquaculture.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygeno.2025.110989DOI Listing

Publication Analysis

Top Keywords

antarctic krill
16
molecular mechanisms
8
body color
8
color differentiation
8
plectropomus leopardus
8
liver intestine
8
color-differentiated individuals
8
body coloration
8
antarctic
5
krill
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!