Micronization is frequently employed to increase the dissolution of poorly soluble drugs, but it easily led to powder aggregation and difficult to mix well on the micro level with poor content uniformity and erratic dissolution behavior. Mannitol is the most commonly used pharmaceutical excipient, and its β form (β-mannitol) is commercially available and extensively investigated, whereas form α (α-mannitol) remain poorly understood. Here, this study demonstrated that α-mannitol could significantly eliminate aggregation phenomena of micronized drugs (i.e., lurasidone hydrochloride, indomethacin and ibuprofen) after general mixing, while β-mannitol could not. In addition, the drug dissolutions after mixing with α-mannitol were also significantly higher than that with β one. This stemmed from the different molecular orientation on their dominant crystal facets, resulting in greater number of unsaturated hydrogen bonds site (0.050 Åvs 0.042 Å) on α-mannitol's crystal facet {013}, leading to more positive charge and negative charge site and higher surface energy (64.42 mJ/mvs 50.26mJ/m). Subsequently, this increased the interaction between drug and α-mannitol, which is higher than interaction between drug itself, also higher than interaction between drug and β-mannitol, resulting in adhesion of drug powder on α-mannitol rather than cohesion into aggregates. Moreover, after 30 days of storage at 60 °C or 92.5 % relative humidity, the polymorphic purity of α-mannitol remained above 99 %, indicating good polymorphic stability during transportation and storage. This work illustrates that α-mannitol exhibited great potential to serve as a new pharmaceutical excipient in solid dosage forms. We believe that utilizing the benefits of polymorphism and mitigating their limitations will exert great potential for the development of functional pharmaceutical excipients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2024.125161 | DOI Listing |
Biosens Bioelectron
December 2024
Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan. Electronic address:
We developed a novel DNA aptamer, D8#24S1, which specifically recognizes mertansine (DM1), the cytotoxic payload of the antibody-drug conjugate (ADC) trastuzumab emtansine (T-DM1), and applied it for T-DM1 analysis. D8#24S1 was obtained through SELEX and was shown to specifically recognize DM1 with high affinity (dissociation constant, K = 84.2 nM).
View Article and Find Full Text PDFJ Struct Biol
January 2025
Center of Structural Biology, Vanderbilt University, Nashville, TN, USA; Department of Chemistry, Vanderbilt University, Nashville, TN, USA; Institute for Drug Discovery, Institute for Computer Science, Wilhelm Ostwald Institute for Physical and Theoretical Chemistry, University Leipzig, Leipzig, Germany; Center for Scalable Data Analytics and Artificial Intelligence ScaDS.AI and School of Embedded Composite Artificial Intelligence SECAI, Dresden/Leipzig, Germany; Department of Pharmacology, Institute of Chemical Biology, Center for Applied Artificial Intelligence in Protein Dynamics, Vanderbilt University, Nashville, TN, USA. Electronic address:
High-throughput characterization of antibody-antigen complexes at the atomic level is critical for understanding antibody function enabling therapeutic development. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) enables rapid epitope mapping, but its data are too sparse for independent structure determination. In this study, we introduce RosettaHDX, a hybrid method that combines computational docking with differential HDX-MS data to enhance the accuracy of antibody-antigen complex models beyond what either method can achieve individually.
View Article and Find Full Text PDFDev Cell
December 2024
Department of Biological Sciences, Ajou University, Suwon 16499, South Korea. Electronic address:
Golgi abnormalities have been linked to aging and age-related diseases, yet the underlying causes and functional consequences remain poorly understood. This study identifies the interaction between age-associated zinc deficiency and Golgi stress as a critical factor in cellular aging. Senescent Golgi bodies from human fibroblasts show a fragmented Golgi structure, associated with a decreased interaction of the zinc-dependent Golgi-stacking protein complex Golgin45-GRASP55.
View Article and Find Full Text PDFVet Parasitol
January 2025
Virbac Australia Pty Ltd, Milperra, NSW 2214, Australia.
Control of the sheep blowfly relies on insecticides, however resistance is currently impacting on their efficacy. The use of insecticides in combination (mixtures) is considered to be a useful strategy to delay resistance under some circumstances. The present study aimed to examine the combination of spinosad with macrocyclic lactones in order to determine if the two drug classes showed any interactions that would impact on the usefulness of a combination product for flystrike control.
View Article and Find Full Text PDFDrug Alcohol Depend
December 2024
Department of Psychology, The Pennsylvania State University, University Park, PA, USA.
Aims: Over the recent decades, smoking among women has become an increasingly pressing public health challenge. Mounting evidence suggests that, compared to men, women's smoking is more strongly influenced by habitual responses to sensorimotor cues. To understand the brain mechanisms underlying the cessation challenges commonly reported by women who smoke, the present study used voxel-based morphometry (VBM) to investigate sex-related volumetric differences in the dorsal striatum, a region implicated in habitual substance use behavior, and their associations with self-reported quit interest among daily smoking adults.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!