A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Investigating the effects of inoculum temperature and characteristics on cellulose and sewage sludge biodegradability: A comparative study of three inocula. | LitMetric

Investigating the effects of inoculum temperature and characteristics on cellulose and sewage sludge biodegradability: A comparative study of three inocula.

Chemosphere

BioEngine Research team on green process engineering and biorefineries, Chemical Engineering Department, Université Laval, Pavillon Adrien-Pouliot 1065, av. de la Médecine Québec (Québec), Canada; CentrEau, Centre de recherche sur l'eau, Université Laval, 1065 Avenue de la Médecine, Québec, QC, G1V 0A6, Canada. Electronic address:

Published: January 2025

The role of inoculum in initiating anaerobic digestion (AD), and accelerating the start-up of anaerobic digesters has been well-documented. However, the effect of aligning the origin temperature of the inoculum with the operational temperature of the new digester remains underexplored. This study investigates how the origin temperature and characteristics of the inoculum affect the kinetics and biodegradability of sewage sludge (SS) and microcrystalline cellulose (MCC) under mesophilic and thermophilic conditions. Three inocula were used: one thermophilic (I1) and two mesophilic inocula (I2 and I3) in six Biomethane Potential tests (BMP) at 37 and 55 °C. Results indicated that inoculum temperature had no significant impact on the BMP values for MCC and SS, regardless of the experimental temperature. However, kinetic analyses revealed that I2 significantly outperformed I1 and I3 under both temperature conditions. This was attributed to I2's more diverse bacterial structure and lower inhibitor concentrations. High alkalinity, ammonia, and volatile fatty acids (VFA), as well as the presence of denitrifying bacteria (41.7 % of total communities in I1) contributed to poor kinetics of I1 and I3, which were unsuitable for mesophilic and thermophilic temperatures, respectively. Alkalinity (correlation with the Simpson index = -0.92, p < 0.05) and ammonia (correlations with Chao and ACE = -0.93 and -0.91, respectively, p < 0.05) were significantly linked to low bacterial diversity, while high VFA levels were strongly associated with poor inoculum kinetics (correlation with degradation kinetics = -0.90 to -0.99, p < 0.05). These findings offer insights into assessing the inoculum suitability based on its characteristics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2025.144077DOI Listing

Publication Analysis

Top Keywords

inoculum temperature
8
temperature characteristics
8
sewage sludge
8
three inocula
8
origin temperature
8
mesophilic thermophilic
8
inoculum
7
temperature
7
investigating effects
4
effects inoculum
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!