Ultra-high field MRI with parallel transmission (pTx) provides a powerful neuroimaging tool with potential application in paediatrics. The use of pTx, however, necessitates a dedicated local specific absorption rate (SAR) management strategy, able to predict and monitor the peak local SAR (pSAR). In this work, we address the pSARassessment for an in-house built 7 Tesla 16Tx32Rx pediatric head coil, using the concept of Virtual Observation Points (VOPs) for SAR estimation. We base our study on full-wave electromagnetic simulations performed on a database of 64 numerical anatomical head models of children aged between 4 and 16 years. We built VOPs on different subsets of this database of=2 up to 30 models, and cross-validated the pSARprediction using non-intersecting subsets, each containing 30 models. We thereby propose a minimum anatomical safety factor (ASF) to apply to the VOP set to enforce safety, despite intersubject variability. Our analysis relies on the computation of the worst case SAR to VOP-SAR ratio, independent of the pTx RF excitation. The interpolation model provides that the minimum ASF decreases as 1+5.37∙Nwith. Using all 64 models to build VOPs leads to an estimated ASF of 1.24 when considering the VOP validity for an infinite number of subjects. We propose a general simulation workflow to guide ASF estimation and quantify the trade-off between the number of numerical models available for VOP construction and the safety factor. The approach would apply to any simulation dataset and any pTx setup. .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6560/ada683 | DOI Listing |
J Environ Manage
January 2025
Department of Civil and Environmental Engineering, Gangneung-Wonju National University, Gangneung, Gangwon-do, 25457, South Korea. Electronic address:
Coastal areas undergo continuous transformations, altering their geometry under the influence of external forces like tides, waves, and extreme events. Thus, monitoring the impact of extreme weather events on coastal regions is crucial to prevent potential cascading hazards. Here, we utilized time-series optical and SAR satellite data and tide records, coupled with sophisticated analytical techniques, to analyze erosion processes, sediment transport, and vertical land movement (VLM) at an embayed sandy beach (i.
View Article and Find Full Text PDFCrit Care
January 2025
Division of Respiratory and Critical Care Medicine, Department of Medicine, National University Hospital, National University Health System, Singapore, Singapore.
Phys Med Biol
January 2025
CNRS, BAOBAB, CEA, NeuroSpin, Université Paris-Saclay, Gif-sur-Yvette, 91191, FRANCE.
Ultra-high field MRI with parallel transmission (pTx) provides a powerful neuroimaging tool with potential application in paediatrics. The use of pTx, however, necessitates a dedicated local specific absorption rate (SAR) management strategy, able to predict and monitor the peak local SAR (pSAR). In this work, we address the pSARassessment for an in-house built 7 Tesla 16Tx32Rx pediatric head coil, using the concept of Virtual Observation Points (VOPs) for SAR estimation.
View Article and Find Full Text PDFLung
January 2025
Department of Pulmonary Diseases, University of Groningen, University Medical Centre Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands.
Front Immunol
January 2025
West China School of Pharmacy, Sichuan University, Chengdu, China.
A comprehensive understanding of tumor heterogeneity, tumor microenvironment and the mechanisms of drug resistance is fundamental to advancing breast cancer research. While single-cell RNA sequencing has resolved the issue of "temporal dynamic expression" of genes at the single-cell level, the lack of spatial information still prevents us from gaining a comprehensive understanding of breast cancer. The introduction and application of spatial transcriptomics addresses this limitation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!