A functional bioink with potential in bone tissue engineering must be subjected to critical investigation throughout its intended lifespan. The aim of this study was to develop alginate-gelatin-based (Alg-Gel) multicomponent bioinks systematically and to assess the short- and long-term exposure responses of human bone marrow stromal cells (hBMSCs) printed within these bioinks with and without crosslinking. The first generation of bioinks was established by incorporating a range of cellulose nanofibrils (CNFs), to evaluate their effect on viscosity, printability and cell viability. Adding CNFs to Alg-Gel solution increased viscosity and printability without compromising cell viability. In the second generation of bioinks, the influence of nano-hydroxyapatite (nHA) on the performance of the optimized Alg-Gel-CNF formulation was investigated. The addition of nHA increased the viscosity and improved printability, and an adjustment in alginate concentration improved the stability of the structures in long-term culture. The third generation bioink incorporated RGD-functionalized alginate to support cell attachment and osteogenic differentiation. The optimized bioink composition exhibited improved printability, structural integrity in long-term culture and high hBMSC viability. In addition, the final bioink composition, RGD-Alg-Gel-CNF-nHA, showed osteogenic potential: production of the osteogenic marker proteins (Runx2, OCN), enzyme (ALP), and gene expression (Runx2, Ocn). A further aim of the study was to evaluate the osteogenic functionality of cells released from the structures after bioprinting. Cells were printed in two bioinks with different viscosities and incubated at 37 °C in growth medium without additional CaCl2. This caused gelatin to dissolve, releasing the cells to attach to tissue culture plates. The results demonstrated differences in hBMSC osteogenic differentiation. Moreover, the osteogenic differentiation of the released cells was different from that of the embedded cells cultured in 3D. Thus, this systematic investigation into bioink development shows improved results through the generations and sheds light on the biological effects of the bioprinting process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1758-5090/ada63b | DOI Listing |
J Biomed Mater Res A
January 2025
Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland.
Bone tissue regeneration can be affected by various architectonical features of 3D porous scaffold, for example, pore size and shape, strut size, curvature, or porosity. However, the design of additively manufactured structures studied so far was based on uniform geometrical figures and unit cell structures, which often do not resemble the natural architecture of cancellous bone. Therefore, the aim of this study was to investigate the effect of architectonical features of additively manufactured (aka 3D printed) titanium scaffolds designed based on microtomographic scans of fragments of human femurs of individuals of different ages on in vitro response of human bone-derived mesenchymal stem cells (hMSC).
View Article and Find Full Text PDFPeerJ
January 2025
Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
Alveolar bone defects have always been an urgent problem in the oral cavity. For some patients with periodontal disease or undergoing orthodontic treatment or implant restoration, alveolar bone defects can greatly inconvenience clinical diagnosis and treatment. Periodontal ligament stem cells (PDLSCs) are considered a promising source for stem cell therapy due to their high osteogenic differentiation capability.
View Article and Find Full Text PDFJ Biol Eng
January 2025
Department of Biomedical Engineering, China Medical University, Taichung, 406040, Taiwan.
Bone defects present a significant challenge in orthopedics and trauma surgery, necessitating innovative approaches to stimulate effective bone regeneration. This study investigated the potential of lithium-doped calcium silicate (LiCS) cement to enhance bone regeneration and modulate the immune microenvironment to promote tissue repair. We synthesized a LiCS ceramic powder and performed comprehensive analyses of its physicochemical properties, including phase composition, morphology, setting time, and mechanical strength.
View Article and Find Full Text PDFImmunopharmacol Immunotoxicol
January 2025
Department of Oral & Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning, Guangxi, China.
Objective: Osteoimmunology is an emerging field that explores the interplay between bone and the immune system. The immune system plays a critical role in the pathogenesis of diabetes and significantly affects bone homeostasis. Artesunate, a first-line treatment for malaria, is known for its low toxicity and multifunctional properties.
View Article and Find Full Text PDFJ Control Release
January 2025
Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China. Electronic address:
Steroid-induced osteonecrosis of the femoral head (SANFH) is a common hip joint disease that imposes a heavy economic burden on society. Patients continue to experience bone necrosis even after discontinuing glucocorticoid therapy, and the specific mechanisms require further investigation. The results of this study demonstrate that exosomes secreted by damaged vascular endothelial cells in SANFH lesions may be a crucial factor leading to abnormal adipogenic differentiation of bone marrow stromal cells (BMSCs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!