Two-dimensional (2D) materials hold great promise for the next-generation optoelectronics applications, many of which, including solar cell, rely on the efficient dissociation of exciton into free charge carriers. However, photoexcitation in atomically thin 2D semiconductors typically produces exciton with a binding energy of ~500 meV, an order of magnitude larger than thermal energy at room temperature. This inefficient exciton dissociation can limit the efficiency of photovoltaics. In this study, employing the first principles approach - DFT, GW+BSE, and analytical model, we demonstrate the role of asymmetric halogenation, dielectric environment, and magnetic field in 2D Ti2O MOene as an efficient strategy for regulating exciton binding energy towards spontaneous exciton dissociation. Our study goes beyond the exciton ground state and quantifies the degree of spatial delocalisation of exciton in excited states as well. We determine the quantitative impact of varying dielectric screening and magnetic field strength on exciton binding energy for different excited states (1s, 2s, 3s, 4s, and so on). Importantly, we reveal the significant role of orbital orientation (whether in-plane or out-of-plane) and symmetry (related to the angular momentum quantum number) in understanding the spatial localization of excitons and their binding energy. Additionally, a high dielectric constant in 2D MOene enables easier exciton dissociation, similar to that observed in 3D bulk semiconductors, while also harnessing the advantages of 2D materials. This makes it an effective material that combines the best of both 3D bulk and 2D structures. The study offers a promising strategy for designing next-generation optoelectronic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/ada65f | DOI Listing |
J Colloid Interface Sci
January 2025
College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China. Electronic address:
Electrochromic (EC) materials based on ion insertion/desertion mechanisms provide a possibility for energy storage. Solution-processable energy storage EC polyamides have great potential for use in smart displays and EC supercapacitors. A suitable monomer structure design is particularly important for enhancing the electrochemical properties of polyamides.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea. Electronic address:
Granulomas, dense clusters of immune cells and bacteria, are critical barriers in tuberculosis (TB) treatment. Recent advancements in TB management have highlighted granuloma control as a potential host-directed therapy (HDT) strategy. Although isoniazid (INH) is the first-line drug for TB therapy, its efficacy is limited to non-replicating Mycobacterium tuberculosis (Mtb) under granulomatous conditions, necessitating the development of more effective derivatives.
View Article and Find Full Text PDFACS Nano
January 2025
Dto. de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain.
We experimentally observe quantum confinement states in bulk MoS by using angle-resolved photoemission spectroscopy (ARPES). The band structure at the Γ̅ point reveals quantum well states (QWSs) linked to vertical quantum confinement of the electrons, confirmed by the absence of dispersion in and a strong intensity modulation with the photon energy. Notably, the binding energy dependence of the QWSs versus does not follow the quadratic dependence of a two-dimensional electron gas.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Qingshan Lake Science and Technology Innovation Center, Hangzhou Medical College, Hangzhou, China.
Background: Ischemic stroke is a prevalent and life-threatening cerebrovascular disease that is challenging to treat and associated with a poor prognosis. Astragaloside IV (AS-IV), a primary bioactive component of Astragali radix, has demonstrated neuroprotective benefits in previous studies. This study aimed to explore the mechanisms through which AS-IV may treat cerebral ischemia-reperfusion injury (CIRI).
View Article and Find Full Text PDFFront Microbiol
December 2024
Scientific Research Institute of Systems Biology and Medicine, Moscow, Russia.
Introduction: WhiA is a conserved protein found in numerous bacteria. It consists of an HTH DNA-binding domain linked with a homing endonuclease (HEN) domain. WhiA is one of the most conserved transcription factors in reduced bacteria of the class Mollicutes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!