We consider a problem of nonlinear response to an external electromagnetic radiation in conventional disordered superconductors which contain a small amount of weak magnetic impurities. We focus on the diffusive limit and use Usadel equation to analyze the excitation energy and dispersion relation of the collective modes. We determine the resonant frequency and dispersion of both amplitude (Schmidt-Higgs) and phase (Carlson-Goldman) modes for moderate strength of magnetic scattering. We find that the minimum energy required for the excitation of the both of these modes decreases with an increase in spin-flip scattering. Surprisingly we also find that as a result the Carlson-Goldman mode becomes gapless and as a consequence can only be excited at some finite value of the threshold momentum. We thus discover yet another physical realization of a state with gapped momentum dispersion of one of its collective modes. The value of the threshold momentum is determined by the distance between the two consecutive spin-flip scattering events which, in turn, is proportional to the scattering time between two consecutive scattering events. The amplitude mode is diffusive and becomes strongly suppressed with the increase in spin-flip scattering. Possible ways to experimentally verify our results are also discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/ada65e | DOI Listing |
J Phys Condens Matter
January 2025
Department of Physics, Kent State University, 008 Smith Hall, Kent, Ohio, 44240, UNITED STATES.
We consider a problem of nonlinear response to an external electromagnetic radiation in conventional disordered superconductors which contain a small amount of weak magnetic impurities. We focus on the diffusive limit and use Usadel equation to analyze the excitation energy and dispersion relation of the collective modes. We determine the resonant frequency and dispersion of both amplitude (Schmidt-Higgs) and phase (Carlson-Goldman) modes for moderate strength of magnetic scattering.
View Article and Find Full Text PDFHeliyon
November 2024
Department of Industrial Chemical Engineering, Institut Teknologi Sepuluh Nopember, 60111, Surabaya, Indonesia.
This bibliographic review paper presents a comprehensive analysis of the scholarly literature on biopesticides utilized in corn pest management, employing a bibliometric approach to identify current trends and prospects in the field. The growing demand for sustainable agricultural practices has fueled interest in biopesticides as effective alternatives to conventional chemical pesticides. By systematically examining relevant publications, this review synthesizes the collective knowledge on biopesticide applications in corn production, encompassing various types of biopesticides, their modes of action, efficacy against key corn pests, and environmental considerations.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
Department of Chemistry and Department of Physics, Westlake University, Hangzhou, Zhejiang 310030, China.
Collective strong light-matter coupling provides a versatile means to manipulate physicochemical properties of molecules and materials. Understanding collective polaritonic dynamics is hindered by the macroscopic number of molecules interacting collectively with photonic modes. We develop a many-body theory to investigate the spectroscopy and dynamics of a molecular ensemble embedded in an optical cavity in the collective strong coupling regime.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Department of Physics, Stockholm University, AlbaNova University Center, SE-10691 Stockholm, Sweden.
Vibrational polaritons are formed by strong coupling of molecular vibrations and photon modes in an optical cavity. Experiments have demonstrated that vibrational strong coupling can change molecular properties and even affect chemical reactivity. However, the interactions in a molecular ensemble are complex, and the exact mechanisms that lead to modifications are not fully understood yet.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
University of Bristol, Chemistry, School of Chemistry, University of Bristol, BS8 1TS, Bristol, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
The design and implementation of collective actions in model protocell communities is an on-going challenge in synthetic protobiology. Herein, we covalently graft alginate or chitosan onto the outer surface of semipermeable enzyme-containing silica colloidosomes to produce hairy catalytic protocells with pH-switchable membrane surface charge. Binary populations of the enzymatically active protocells exhibit self-initiated stimulus-responsive changes in spatial organization such that the mixed community undergoes alternative modes of electrostatically induced self-sorting and reversible co-clustering.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!