A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fully automated segmentation of brain and scalp blood vessels on multi-parametric magnetic resonance imaging using multi-view cascaded networks. | LitMetric

Background And Objective: Neurosurgical navigation is a critical element of brain surgery, and accurate segmentation of brain and scalp blood vessels is crucial for surgical planning and treatment. However, conventional methods for segmenting blood vessels based on statistical or thresholding techniques have limitations. In recent years, deep learning-based methods have emerged as a promising solution for blood vessel segmentation, but the segmentation of small blood vessels and scalp blood vessels remains challenging. This study aimed to explore a solution to overcoming the challenges.

Methods: This study proposes a multi-view cascaded deep learning network (MVPCNet) that combines multiple refinements, including multi-view learning, multi-parameter input, and a multi-view ensemble module. We evaluated the proposed method on a dataset of 155 patients, which included annotations for brain and scalp blood vessels. Five-fold cross-validation was conducted on the dataset to assess the performance of the network.

Results: Ablation experiments showed that the proposed refinements in MVPCNet significantly improved the segmentation of small blood and low-contrast vessel performance, which segmented scalp blood vessels from the original images, increasing the Dice and the 95 % Hausdorf distance (HD), from 0.865 to 0.922 and from 1.28 mm to 0.47 mm, respectively, compared to the baseline model.

Conclusions: The proposed method in this study provided a fully automated and accurate segmentation of brain and scalp blood vessels, which is essential for neurosurgical navigation and has potential for clinical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2025.108584DOI Listing

Publication Analysis

Top Keywords

blood vessels
32
scalp blood
24
brain scalp
16
segmentation brain
12
blood
10
fully automated
8
vessels
8
multi-view cascaded
8
neurosurgical navigation
8
accurate segmentation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!