Polyphenols, natural compounds abundant in phenolic structures, have received widespread attention due to their antioxidant, anti-inflammatory, antibacterial, and anticancer properties, making them valuable for biomedical applications. However, the green synthesis of polyphenol-based materials with economical and environmentally friendly strategies is of great significance. In this study, a multifunctional wound dressing was achieved by introducing polyphenol-based materials of copper phosphate-tannic acid with a flower-like structure (Cu-TA NFs), which show the reactive oxygen species scavenging performance. This strategy endowed the electrospun wound dressing, composed of poly(caprolactone)-coated gum arabic-poly(vinyl alcohol) nanofibers (GPP), with the antibacterial and antibiofilm properties. Our research demonstrates that GPP/Cu-TA NFs are effective against , , and . Furthermore, the developed GPP/Cu-TA NFs showed excellent hemocompatibility and biocompatibility. These results suggest that the synergistic properties of this multifunctional polyphenol platform (GPP/Cu-TA NFs) make it a promising candidate for the further development of wound dressing materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.4c00788DOI Listing

Publication Analysis

Top Keywords

wound dressing
12
gpp/cu-ta nfs
12
antibacterial antibiofilm
8
antibiofilm properties
8
polyphenol-based materials
8
self-assembled nanoflowers
4
nanoflowers natural
4
natural building
4
building blocks
4
blocks antioxidant
4

Similar Publications

Annually, thousands of individuals suffer from skin injuries resulting from trauma, surgeries, or diabetes. Inadequate wound treatment can delay healing and increase the risk of severe infections. In this context, a promising synthetic polymer with potent antimicrobial properties, Poly{2-[(methacryloyloxy)ethyl]trimethylammonium chloride} (PMETAC), is synthesized and crosslinked with N,N'-Methylenebis(acrylamide) (BIS) in the presence of Chitosan (CH), a natural, biocompatible polysaccharide that promotes cell regeneration and provides additional beneficial properties.

View Article and Find Full Text PDF

Charge Regulation-Enhanced Type I Photosensitizer-Loaded Hydrogel Dressing for Hypoxic Bacterial Inhibition and Biofilm Elimination.

ACS Nano

January 2025

State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.

Biofilm-induced chronic bacterial infections represent a significant challenge in modern medicine due to their resistance to conventional antibiotic treatments. Although photodynamic therapy (PDT) has emerged as a promising antibiotic-free antibacterial strategy, the hypoxic condition within biofilms and the lack of an effective local drug delivery system have limited the clinical effectiveness of photosensitizer (PS) agents. Herein, we propose a type of charge regulation-enhanced type I PS-loaded hydrogel dressing for treating biofilm infection.

View Article and Find Full Text PDF

This study introduced a hydrogel dressing, termed SODex-gel, which was constructed by establishing Schiff base and hydrogen bonds with the precursors of oxidized dextran (ODex) and succinic dihydrazide (SD)-modified sodium alginate (SD--SA). Through comprehensive and studies, the adhesive properties, self-healing capabilities, hemostatic potential, and wound healing efficacy of the SODex-gel dressing were meticulously evaluated. The H NMR, FTIR, and TGA analyses confirmed the fabrication of the SODex-gel dressing and its constituent elements.

View Article and Find Full Text PDF

Medical device-related pressure injuries (MDRPIs) pose a significant risk in the home health environment, where patients may lack continuous professional oversight. Devices commonly used in the home environment with the potential to cause a MDRPI include but are not limited to nasogastric tubes, feeding tubes, nasal cannulas, nasal cannula prongs, airway pressure masks, indwelling urinary catheters, sequential compression devices, dressings, bandages, and tracheostomies. When a medical device is used for an extended period, it can lead to unrelieved pressure or edema, cause friction and/or shearing that impairs sensation, reduces circulation, and alters the microclimate.

View Article and Find Full Text PDF

Background: Novel platforms using nanotechnology-based medicines have exponentially increased in our daily lives. The unique characteristics of metal oxide and noble metals nanoparticles make them suitable for different fields including antimicrobial agents, cosmetics, textiles, wound dressings, and anticancer drug carriers.

Methods: This study focuses on the biosynthesis of small-sized SNPs using exo-metabolites of Fusarium oxysporum via bioprocess optimization using Plackett-Burman (PBD) and central composite designs (CCD) while evaluating their multifaceted bioactivities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!