A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Transforming literature screening: The emerging role of large language models in systematic reviews. | LitMetric

Systematic reviews (SR) synthesize evidence-based medical literature, but they involve labor-intensive manual article screening. Large language models (LLMs) can select relevant literature, but their quality and efficacy are still being determined compared to humans. We evaluated the overlap between title- and abstract-based selected articles of 18 different LLMs and human-selected articles for three SR. In the three SRs, 185/4,662, 122/1,741, and 45/66 articles have been selected and considered for full-text screening by two independent reviewers. Due to technical variations and the inability of the LLMs to classify all records, the LLM's considered sample sizes were smaller. However, on average, the 18 LLMs classified 4,294 (min 4,130; max 4,329), 1,539 (min 1,449; max 1,574), and 27 (min 22; max 37) of the titles and abstracts correctly as either included or excluded for the three SRs, respectively. Additional analysis revealed that the definitions of the inclusion criteria and conceptual designs significantly influenced the LLM performances. In conclusion, LLMs can reduce one reviewer´s workload between 33% and 93% during title and abstract screening. However, the exact formulation of the inclusion and exclusion criteria should be refined beforehand for ideal support of the LLMs.

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.2411962122DOI Listing

Publication Analysis

Top Keywords

large language
8
language models
8
systematic reviews
8
three srs
8
llms
6
transforming literature
4
screening
4
literature screening
4
screening emerging
4
emerging role
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!