Aging oocytes: exploring apoptosis and its impact on embryonic development in common carp (Cyprinus carpio).

J Anim Sci

Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, 389 01 Vodňany, Czech Republic.

Published: January 2025

AI Article Synopsis

  • Ovulation, fertilization, and embryo development are critical processes whose success is compromised by post-ovulatory aging, leading to reduced oocyte quality and fertilization ability.
  • The study focused on common carp and found that oocyte aging significantly triggers apoptosis, particularly noticeable after 48 hours post-stripping, with increased levels of pro-apoptotic genes and active caspase 3 enzyme.
  • Although early blastula embryos (5 HPF) from both fresh and aged oocytes showed no signs of apoptosis, the embryos from aged oocytes at 24 HPF displayed heightened apoptosis, indicating a time-dependent effect of oocyte aging on embryonic development.

Article Abstract

Ovulation, fertilization, and embryo development are orchestrated and synchronized processes essential for the optimal health of offspring. Postovulatory aging disrupts this synchronization and impairs oocyte quality. In addition, oocyte aging causes fertilization loss and poor embryo development. This investigation aimed to unravel the endpoint of in vitro oocyte aging in common carp (Cyprinus carpio) to understand the involvement of apoptosis in postovulatory oocyte death. It was observed that the fertilization ability significantly declined (P < 0.001) at 8-h poststripping (HPS), subsequently triggering apoptosis in the advanced stage of oocyte aging, i.e., 48 HPS. This process included an increase in proapoptotic transcripts (fas, bax, cathepsin D, caspase 8, caspase 9, and caspase 3a) (P < 0.05), elevated levels of caspase 3 protein (P < 0.05), and activation of caspase 3 enzyme (P < 0.001), a key player in apoptosis, in aging oocytes. Furthermore, the effects of oocyte aging on the embryonic apoptosis machinery were examined in embryos at 5-h postfertilization (HPF) and 24 HPF derived from fresh and aged oocytes. Expression of apoptotic genes and caspase enzyme activity remained at the basal level in 5 HPF (early blastula embryos) from both fresh and aged oocytes. In contrast, the zymogenic and active forms of caspase 3 increased in 24 HPF embryos from 8-h-aged oocytes (P < 0.01) compared with those from fresh oocytes. Thus, apoptosis intensified in 24 HPF embryos from aged oocytes without affecting the apoptotic machinery of early blastula embryos. Our findings demonstrate that apoptosis initiated by the Fas/FasL system is an important physiological process accompanying oocyte aging in common carp.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757700PMC
http://dx.doi.org/10.1093/jas/skaf002DOI Listing

Publication Analysis

Top Keywords

common carp
8
carp cyprinus
8
cyprinus carpio
8
embryo development
8
oocyte aging
8
aging
4
aging oocytes
4
oocytes exploring
4
exploring apoptosis
4
apoptosis impact
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!