Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Greenhouse gases (GHGs) have caused great harm to the ecological environment, so it is necessary to screen gas sensor materials for detecting GHGs. In this study, we propose an ideal gas sensor design strategy with high screening efficiency and low cost targeting four typical GHGs (CO, CH, NO, SF). This strategy introduces machine learning (ML) methods based on density functional theory (DFT) to achieve accurate and rapid screening from a large number of candidate gas sensor materials. Specifically, the candidate materials include 28 different transition metal-doped WSe monolayers (TM-WSe), and four gas molecules and their optimal adsorption structures on TM-WSe are constructed. Ten fine-tuned ML models are implemented to train and predict the adsorption energy () and adsorption distance () of target gases on TM-WSe, thereby selecting the optimal ML model and identifying these promising gas sensor materials. In addition, the gas-sensing properties of these materials are verified by band structure, work function, and recovery time. This research provides a reasonable and low-cost new way for rapid screening of ideal gas sensor materials with the help of artificial intelligence and proves its effectiveness through experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssensors.4c03254 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!