A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Aminoglycoside tolerance in engages translational reprogramming associated with queuosine tRNA modification. | LitMetric

AI Article Synopsis

  • Tgt enzyme modifies guanine in tRNAs with GUN anticodon to queuosine, which is crucial for bacterial growth under aminoglycoside stress.
  • Research highlights the significance of Q34 modification in enhancing decoding efficiency of specific codons (TAT and TAC) during tobramycin exposure.
  • Findings suggest that Q34 regulation can lead to translational reprogramming impacting genes like RsxA, crucial for the bacterial response to oxidative stress and antibiotics.

Article Abstract

Tgt is the enzyme modifying the guanine (G) in tRNAs with GUN anticodon to queuosine (Q). is required for optimal growth of in the presence of sub-lethal aminoglycoside concentrations. We further explored here the role of the Q34 in the efficiency of codon decoding upon tobramycin exposure. We characterized its impact on the overall bacterial proteome, and elucidated the molecular mechanisms underlying the effects of Q34 modification in antibiotic translational stress response. Using molecular reporters, we showed that Q34 impacts the efficiency of decoding at tyrosine TAT and TAC codons. Proteomics analyses revealed that the anti-SoxR factor RsxA is better translated in the absence of . RsxA displays a codon bias toward tyrosine TAT and overabundance of RsxA leads to decreased expression of genes belonging to SoxR oxidative stress regulon. We also identified conditions that regulate expression. We propose that regulation of Q34 modification in response to environmental cues leads to translational reprogramming of transcripts bearing a biased tyrosine codon usage. In silico analysis further identified candidate genes which could be subject to such translational regulation, among which DNA repair factors. Such transcripts, fitting the definition of modification tunable transcripts, are central in the bacterial response to antibiotics.

Download full-text PDF

Source
http://dx.doi.org/10.7554/eLife.96317DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703503PMC

Publication Analysis

Top Keywords

translational reprogramming
8
q34 modification
8
tyrosine tat
8
aminoglycoside tolerance
4
tolerance engages
4
translational
4
engages translational
4
reprogramming associated
4
associated queuosine
4
queuosine trna
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!