Herein, we report an efficient [Ru(η-CH)Cl] catalyzed oxidative C-H alkenylation of benzoic acid in the green solvent water. A regioselective olefination of benzoic acid with functionalized alkenes like styrene and acrylate was established at a very mild condition of 60 °C temperature and in an aqueous medium. In contrast to the cyclization of the carboxylic group, a selective -olefination product of benzoic acid was observed with the acrylate. Moreover, a selective formation of mono-olefinated products were observed with activated olefins (acrylate), while mono and diolefinated products were recorded with unactivated olefins (styrene). In contrast to the reactivity of acrylates and styrenes, a fruitful development and formation of a novel five-member cyclic ring, i.e., the ()-3-ferrocenylideneisobenzofuran-1(3)-one, was observed when vinylferrocene was considered as a coupling partner for the reaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.4c00948 | DOI Listing |
Inorg Chem
January 2025
School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, PR China.
Mismatched electron and proton transport rates impede the manifestation of effective performance of the electrocatalytic oxygen evolution reaction (OER), thereby limiting its industrial applications. Inspired by the natural protein cluster in PS-II, different organic-inorganic hybrid electrocatalysts were synthesized via a hydrothermal method. -Toluidine (PT), benzoic acid (BA), and -aminobenzoic acid (PABA) were successfully intercalated into NiFe-LDH.
View Article and Find Full Text PDFApplications of genetic code expansion in live cells are widespread and continually emerging, yet they have been limited by their reliance on the supplementation of non-standard amino acids (nsAAs) to cell culturing media. While advances in cell-free biocatalysis are improving nsAA synthesis cost and sustainability, such processes remain reliant on multi-step processes of product isolation followed by supplementation to engineered cells. Here, we report the design of a modular and genetically encoded system that combines the steps of biosynthesis of diverse phenylalanine derivatives, which are the most frequently used family of nsAAs for genetic code expansion, and their site-specific incorporation within target proteins using a single engineered bacterial host.
View Article and Find Full Text PDFEnviron Res
January 2025
State Key Laboratory of Soil & Sustainable Agriculture, Institute of soil science, Chinese academy of sciences, Nanjing 211135, China. Electronic address:
Layered double hydroxide intercalated with mercaptosuccinic acid (MSA-CFA) holds considerable promise for remediating cadmium (Cd)-contaminated soils through selective immobilization; however, its stability under acidic conditions has yet to be investigated. The acidic stability of MSA-CFA was investigated by acid stability investigation and simulated soil acidification. In the immersion test, the cadmium dissolution rate (DR) for the Cd immobilized products of MSA-CFA (MSA-CFA-Cd) was significantly lower (2.
View Article and Find Full Text PDFJ Org Chem
January 2025
Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, Rajasthan, India.
Chem Sci
December 2024
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun Jilin 130012 China
The chemical recycling of polystyrene (PS) waste to value-added aromatic compounds is an attractive but formidable challenge due to the inertness of the C-C bonds in the polymer backbone. Here we develop a light-driven, copper-catalyzed protocol to achieve aerobic oxidation of various alkylarenes or real-life PS waste to benzoic acid and oxidized styrene oligomers. The resulting oligomers can be further transformed under heating conditions, thus achieving benzoic acid in up to 65% total yield through an integrated one-pot two-step procedure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!