Microelectronic Structure and Doping Nonuniformity of Phosphorus-Doped CdSeTe Solar Cells.

ACS Appl Mater Interfaces

National Renewable Energy Laboratory, Golden, Colorado 80401, United States.

Published: January 2025

Optimizing group-V doping and Se alloying are two main focuses for advancing CdTe photovoltaic technology. We report on nanometer-scale characterizations of microelectronic structures of phosphorus (P)-doped CdSeTe devices using a combination of two atomic force microscopy-based techniques, namely, Kelvin probe force microscopy (KPFM) and scanning spreading resistance microscopy (SSRM). KPFM on device cross-section images distribution of the potential drop across the device. SSRM taken on a delaminated front interface and further beveling into absorber bulk reveals local distributions of doping polarity and carrier concentration. The KPFM and SSRM imaging corroborate each other, suggesting that nonuniform doping revealed by SSRM is associated with nonuniform potential features observed by KPFM. These detrimental microelectronic structures were improved by enhancing P-doping. The large nonuniform potential drop and deep overall n-p transition in the device without doping were mitigated to potential fluctuation around the front interface and n-p transition depth of ∼100 nm by low-level P-doping and further mitigated to scarce and slight irregular potential and p-weighed doping at the interface by high-level P-doping. These characterizations imply sophisticated defect chemistry, atomic structure, and associated electronic structure in CdTe with Se alloying and group-V doping together and further point to the direction for improving device efficiency by mitigating and ultimately eliminating the nonuniform doping and irregular potential.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c15741DOI Listing

Publication Analysis

Top Keywords

doping
8
group-v doping
8
microelectronic structures
8
potential drop
8
front interface
8
nonuniform doping
8
nonuniform potential
8
n-p transition
8
irregular potential
8
potential
6

Similar Publications

Electronic confinement induced quantum dot behavior in magic-angle twisted bilayer graphene.

Nanoscale

January 2025

Transport at Nanoscale Interfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.

Magic-angle twisted bilayer graphene (TBLG) has emerged as a versatile platform to explore correlated electron phases driven primarily by low-energy flat bands in moiré superlattices. While techniques for controlling the twist angle between graphene layers have spurred rapid experimental progress, understanding the effects of doping inhomogeneity on electronic transport in correlated electron systems remains challenging. In this work, we investigate the interplay of confinement and doping inhomogeneity on the electrical transport properties of TBLG by leveraging device dimensions and twist angles.

View Article and Find Full Text PDF

Silver chalcogenides exhibit exceptional transport properties but face structural instability at high temperatures, limiting their practical applications. Using AgTe as a model, it is confirm that silver whisker growth above the phase transition renders AgTe unsuitable for thermoelectric applications. Here, the whisker growth mechanism is investigated and propose an inhibition strategy, overcoming a major obstacle in using silver chalcogenides.

View Article and Find Full Text PDF

The construction of coupled electrolysis systems utilizing renewable energy sources for electrocatalytic nitrate reduction and sulfion oxidation reactions (NORR and SOR), is considered a promising approach for environmental remediation, ammonia production, and sulfur recovery. Here, a simple chemical dealloying method is reported to fabricate a hierarchical porous multi-metallic spinel MFeO (M═Ni, Co, Fe, Mn) dual-functional electrocatalysts consisting of Mn-doped porous NiFeO/CoFeO heterostructure networks and Ni/Co/Mn co-doped FeO nanosheet networks. The excellent NORR with high NH Faradaic efficiency of 95.

View Article and Find Full Text PDF

Technological advancements have intensified the demand for effective counterfeiting protection. This work presents multi-level security features in a (Ca,Zn)TiO:Pr,Er phosphor. A dual doping strategy synergistically results in dynamically changing luminescence emission.

View Article and Find Full Text PDF

In-plane aligned doping pattern in electrospun PEI/MBene nanocomposites for high-temperature capacitive energy storage.

Mater Horiz

January 2025

State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China.

To achieve superior energy storage performance in dielectric polymer films, it is crucial to balance three key properties: high dielectric constant, high breakdown strength, and low dielectric loss. Here, we present the realization of ultrahigh efficiency and energy density in electrospun MBene/PEI composite films, achieved through an in-plane aligned doping pattern. The 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!