A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Chlorine-Doped SnO2 Nanoflowers on Nickel Hollow Fiber for Enhanced CO2 Electroreduction at Ampere-level Current Densities. | LitMetric

AI Article Synopsis

  • Renewable energy-driven electrochemical CO2 reduction is a promising but challenging technology for producing storable liquid fuels efficiently.
  • A novel catalytic electrode made of chlorine-doped SnO2 nanoflowers on nickel hollow fibers shows exceptional performance, achieving 99% selectivity for formate and 93% conversion at high current densities.
  • The design enhances mass transfer and boosts CO2 conversion activity, with chlorine incorporation improving electron transport and lowering energy barriers for key intermediate formation.

Article Abstract

Renewable energy-driven electrochemical CO2 reduction has emerged as a promising technology for a sustainable future. However, achieving efficient production of storable liquid fuels at ampere-level current densities remains a significant hurdle in the large-scale implementation of CO2 electroreduction. Here we report a novel catalytic electrode comprising chlorine-doped SnO2 nanoflowers arrayed on the exterior of three-dimensional nickel hollow fibers. This electrode demonstrates exceptional electrocatalytic performance for converting CO2 to formate, achieving a remarkable formate selectivity of 99% and a CO2 single-pass conversion rate of 93% at 2 A cm-2. Furthermore, it exhibits excellent stability, maintaining a formate selectivity of above 94% for 520 h at a current density of 3 A cm-2. Experimental results combined with theoretical calculations confirm that the enhanced mass transfer facilitated by the hollow fiber penetration effect, coupled with the well-retained Sn4+ species and Sn-Cl bonds, synergistically elevates the activity of CO2 conversion. The incorporation of chlorine into SnO2 enhances electron transport and CO2 adsorption, substantially lowering the reaction energy barrier for the crucial intermediate *OCHO formation, and boosting the formate production.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202423370DOI Listing

Publication Analysis

Top Keywords

chlorine-doped sno2
8
sno2 nanoflowers
8
nickel hollow
8
hollow fiber
8
co2 electroreduction
8
ampere-level current
8
current densities
8
formate selectivity
8
co2
7
nanoflowers nickel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!