A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Small upconversion-ruthenium nanohybrids for cancer theranostics. | LitMetric

Small upconversion-ruthenium nanohybrids for cancer theranostics.

Nanoscale

McMaster University, Department of Engineering Physics, Hamilton, ON M8S 4K1, Canada.

Published: January 2025

AI Article Synopsis

  • Photoresponsive drug delivery systems offer enhanced cancer treatment but face issues with size and limited light penetration.
  • A new near infrared responsive system was created using azobenzene-modified silica nanoparticles that release a drug upon specific light excitation.
  • The design allows for targeted delivery to cancer cell nuclei, facilitating DNA damage and cell destruction, making it a promising approach for effective cancer therapy.

Article Abstract

Photoresponsive drug delivery systems have great potential for improved cancer therapy. However, most of the currently available drug-delivery nanosystems are relatively large and require light excitation with low tissue penetration. Here, we designed a near infrared responsive drug delivery system by loading [Ru(terpyridine)(dipyridophenazine)(HO)] (Ru(tpy)DPPZ) in azobenzene-modified mesoporous silica coated NaGdF:Nd/Yb/Tm upconversion nanoparticles (azo-mSiO-UCNPs). Upon 808 nm excitation, the generated ultraviolet and blue upconversion luminescence induced a reversible - isomerization of azobenzene for on-demand release of Ru(tpy)DPPZ. Imaging of both the UCNPs and Ru(tpy)DPPZ revealed targeted drug delivery to the nucleus of MCF-7 breast cancer cells, inducing DNA damage and concomitant cell destruction. Considering that cell nuclei are the core of cellular transcription and the main site of action for multiple chemotherapeutic drugs, our NIR-excitable and small (10 nm diameter) nanohybrids can potentially become highly versatile tools for targeted cancer theranostics.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4nr04210gDOI Listing

Publication Analysis

Top Keywords

drug delivery
12
cancer theranostics
8
small upconversion-ruthenium
4
upconversion-ruthenium nanohybrids
4
cancer
4
nanohybrids cancer
4
theranostics photoresponsive
4
photoresponsive drug
4
delivery systems
4
systems great
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!