AI Article Synopsis

  • MASLD (formerly NAFLD) is a significant cause of liver disease and there are limited treatment options available to prevent liver fat accumulation.
  • Research indicates that vasoactive intestinal peptide-producing neurons (VIP-neurons) impact fat absorption and IL-22 production, which may help protect the liver.
  • In experiments on mice, decreased communication between VIP-neurons and type 3 innate lymphoid cells (ILC3) led to increased IL-22 production and reduced liver fat, suggesting this neuroimmune pathway could be a promising target for new therapies.

Article Abstract

Background: Metabolic dysfunction-associated steatotic liver disease (MASLD, formerly known as NAFLD) is a major driver of cirrhosis and liver-related mortality. However, therapeutic options for MASLD, including prevention of liver steatosis, are limited. We previously described that vasoactive intestinal peptide-producing neurons (VIP-neurons) regulate the efficiency of intestinal dietary fat absorption and IL-22 production by type 3 innate lymphoid cells (ILC3) in the intestine. Given the described hepatoprotective role of IL-22, we hypothesize that modulation of this neuroimmune circuit could potentially be an innovative approach for the control of liver steatosis.

Methods: We used a model of diet-induced MASLD by exposing mice to a high-fat diet (HFD) for 16 weeks, when the development of liver steatosis was first observed in our animals. We characterized IL-22 production by intestinal ILC3 at this dietary endpoint. We then evaluated whether communication between VIP-neurons and ILC3 affected IL-22 production and MASLD development by exposing mice with a conditional genetic deletion of Vipr2 in ILC3 (Rorc(t)CreVipr2fl/fl) to the HFD. We also performed intermittent global inhibition of VIP-neurons using a chemogenetic inhibitory approach (VipIres-CrehM4DiLSL) in HFD-fed mice.

Results: Production of IL-22 by intestinal ILC3 is reduced in steatotic mice that were exposed to an HFD for 16 weeks. Targeted deletion of VIP receptor 2 in ILC3 resulted in higher production of IL-22 in ILC3 and was associated with a significant reduction in liver steatosis in mice under HFD. Global inhibition of VIP-producing neurons also resulted in a significant reduction in liver steatosis.

Conclusions: Modulating VIPergic neuroimmune signaling can ameliorate the development of hepatic steatosis induced by a surplus of fat ingestion in the diet. This neuroimmune pathway should be further investigated as a potential therapeutic avenue in MASLD.

Download full-text PDF

Source
http://dx.doi.org/10.1097/HC9.0000000000000528DOI Listing

Publication Analysis

Top Keywords

liver steatosis
12
il-22 production
12
hepatic steatosis
8
exposing mice
8
hfd weeks
8
intestinal ilc3
8
global inhibition
8
production il-22
8
reduction liver
8
il-22
7

Similar Publications

Mitochondrial dysfunction and lipid alterations in primary sclerosing cholangitis.

Scand J Gastroenterol

January 2025

Norwegian PSC Research Centre, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway.

Objectives: Indications of mitochondrial dysfunction are commonly seen in liver diseases, but data are scarce in primary sclerosing cholangitis (PSC). Analyzing circulating and liver-resident molecules indirectly reflecting mitochondrial dysfunction, we aimed to comprehensively characterize this deficit in PSC, and whether this was PSC specific or associated with cholestasis.

Materials And Methods: We retrospectively included plasma from 191 non-transplant patients with large-duct PSC and 100 healthy controls and explanted liver tissue extracts from 24 PSC patients and 18 non-cholestatic liver disease controls.

View Article and Find Full Text PDF

Purpose: Acute fatty liver of pregnancy (AFLP) is a severe complication that can occur in the third trimester or immediately postpartum, characterized by rapid hepatic failure. This study aims to explore the changes in portal vein blood flow velocity and liver function during pregnancy, which may assist in the early diagnosis and management of AFLP.

Methods: This longitudinal study was conducted at a tertiary healthcare center with participants recruited from routine antenatal check-ups.

View Article and Find Full Text PDF

Machine learning applications in healthcare clinical practice and research.

World J Clin Cases

January 2025

Department of Gastroenterology, Laiko General Hospital, National and Kapodistrian University of Athens, Athens 11527, Greece.

Machine learning (ML) is a type of artificial intelligence that assists computers in the acquisition of knowledge through data analysis, thus creating machines that can complete tasks otherwise requiring human intelligence. Among its various applications, it has proven groundbreaking in healthcare as well, both in clinical practice and research. In this editorial, we succinctly introduce ML applications and present a study, featured in the latest issue of the .

View Article and Find Full Text PDF

Gut microbiota involvement in the effect of water-soluble dietary fiber on fatty liver and fibrosis.

Biosci Microbiota Food Health

August 2024

Department of Gastroenterology, Hematology and Clinical immunology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki-shi, Aomori 036-8562, Japan.

The beneficial effects of water-soluble dietary fiber on liver fat and fibrosis involve the gut microbiota; however, few epidemiological studies have investigated this association. This large-scale epidemiological study aimed to determine the effect of water-soluble dietary fiber intake on liver fat and fibrosis via gut microbiota for the general population. We divided low- and high-intake groups by median daily water-soluble dietary fiber intake and matched background factors by propensity score matching for sex and age.

View Article and Find Full Text PDF

The prevalence of childhood obesity is rising globally, with some obese children progressing to develop metabolic syndrome (MS). However, the specific differences between these groups remain unclear. To investigate the differences in gut microbiota, we conducted physiological and biochemical assessments, alongside 16S rRNA sequencing, in a cohort of 32 children from Southeastern China, which included 4 normal-weight children, 5 with mild obesity, 9 with moderate obesity, 9 with severe obesity, and 5 with metabolic syndrome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!