AI Article Synopsis

  • High-mobility group box-1 (HMGB1) levels rise and undergo post-translational modifications (PTMs) with alcohol consumption, potentially influencing the development of alcohol-associated liver disease (AALD).
  • Researchers used a specific model of liver injury caused by alcohol to explore how manipulating HMGB1's expression and modifications in liver cells and immune cells impacts AALD.
  • Their findings show that different forms of HMGB1 have contrasting effects: oxidized HMGB1 (O) worsens liver injury while acetylated HMGB1 (Ac) can protect against these harmful effects, highlighting the importance of targeting O HMGB1 in treating AALD.

Article Abstract

Background: We previously identified that high-mobility group box-1 (HMGB1) is increased and undergoes post-translational modifications (PTMs) in response to alcohol consumption. Here, we hypothesized that specific PTMs, occurring mostly in hepatocytes and myeloid cells, could contribute to the pathogenesis of alcohol-associated liver disease (AALD).

Methods: We used the Lieber-DeCarli (LD) model of early alcohol-induced liver injury, combined with engineered viral vectors and genetic approaches to regulate the expression of HMGB1, its PTMs (reduced [H], oxidized [O], acetylated [Ac], both [O + Ac]), and its receptors (RAGE, TLR4) in a cell-specific manner (hepatocytes and/or myeloid cells).

Results: Hmgb1 ablation in hepatocytes or myeloid cells partially protected, while ablation in both prevented steatosis, inflammation, IL1B production, and alcohol-induced liver injury. Hepatocytes were a major source of [H], [O], and [Ac] HMGB1, whereas myeloid cells produced only [H] and [Ac] HMGB1. Neutralization of HMGB1 prevented, whereas injection of [H] HMGB1 increased AALD, which was worsened by injection of [O] HMGB1. While [O] HMGB1 induced liver injury, [Ac] HMGB1 protected and counteracted the effects of [O] HMGB1 in AALD. [O] HMGB1 stimulated macrophage (MF) migration, activation, IL1B production, and secretion. Ethanol-fed RageΔMye but not Tlr4ΔMye, RageΔHep, or Tlr4ΔHep mice were protected from AALD, indicating a crucial role of RAGE in myeloid cells for AALD. [O] HMGB1 recruited and activated myeloid cells through RAGE and contributed to steatosis, inflammation, and IL1B production in AALD.

Conclusions: These results provide evidence for targeting [O] HMGB1 of hepatocyte origin as a ligand for RAGE signaling in myeloid cells and a driver of steatosis, inflammatory cell infiltration, and IL1B production in AALD. Importantly, we reveal that [Ac] HMGB1 offsets the noxious effects of [O] HMGB1 in AALD.

Download full-text PDF

Source
http://dx.doi.org/10.1097/HC9.0000000000000549DOI Listing

Publication Analysis

Top Keywords

[o] hmgb1
28
myeloid cells
24
hmgb1
17
il1b production
16
[ac] hmgb1
16
liver injury
12
[o]
9
post-translational modifications
8
alcohol-associated liver
8
liver disease
8

Similar Publications

Article Synopsis
  • High-mobility group box-1 (HMGB1) levels rise and undergo post-translational modifications (PTMs) with alcohol consumption, potentially influencing the development of alcohol-associated liver disease (AALD).
  • Researchers used a specific model of liver injury caused by alcohol to explore how manipulating HMGB1's expression and modifications in liver cells and immune cells impacts AALD.
  • Their findings show that different forms of HMGB1 have contrasting effects: oxidized HMGB1 (O) worsens liver injury while acetylated HMGB1 (Ac) can protect against these harmful effects, highlighting the importance of targeting O HMGB1 in treating AALD.
View Article and Find Full Text PDF

Antihypertensive effects of rice peptides involve intestinal microbiome alterations and intestinal inflammation alleviation in spontaneously hypertensive rats.

Food Funct

January 2025

Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.

Gut dysbiosis serves as an underlying risk factor for the development of hypertension. The resolution of this dysbiosis has emerged as a promising strategy in improving hypertension. Food-derived bioactive protein peptides have become increasingly more attractive in ameliorating hypertension, primarily due to their anti-inflammatory and anti-oxidant activities.

View Article and Find Full Text PDF

Background: Cancer radiotherapy (RT) still has limited clinical success because of the obstacles including radioresistance of hypoxic tumors, high-dose X-ray-induced damage to adjacent healthy tissue, and DNA-damage repair by intracellular PD-L1 in tumor.

Results: Therefore, to overcome these obstacles multifunctional core-shell BMS@PtAu nanoparticles (NPs) are prepared using nanoprecipitation followed by electrostatic assembly. PtAu clusters are released from BMS@PtAu NPs to alleviate tumor hypoxia by catalyzing the decomposition of endogenous HO to generate O as well as by enhancing X-ray deposition at the tumor site, which thereby reduce the required X-ray dose.

View Article and Find Full Text PDF

Anti-Inflammatory Effects of Extracellular Vesicles from on 12-O-Tetradecanoylphorbol-13-Acetate-Induced Skin Inflammation in Mice.

Int J Mol Sci

November 2024

Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea.

Steroids, which are often used to treat the inflammation associated with various skin diseases, have several negative side effects. As extract has anti-inflammatory effects in various diseases, we evaluated the efficacy of -derived extracellular vesicles (EVEs) in decreasing 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation. We determined the effect of the EVEs on the TLR4/NF-κB/NLRP3 inflammasome in human keratinocytes and mouse ear skin.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatotic liver disease (MASLD) and opisthorchiasis, caused by Opisthorchis viverrini (O. viverrini) infection, frequently co-exist in Northeast Thailand. However, the underlying pathophysiology remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!