Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Traditionally, Bidens pilosa L. is an edible herb utilized for various ailments. The study accomplished a complete analysis of B. pilosa extract including UPLC/T-TOF-MS/MS, GC-MS, and in vitro antiproliferative activity, in addition to molecular docking on kinase and aldose reductase enzymes. From GC-MS analysis, the percentage of identified unsaturated fatty acids (FAs) (11.38%) was greater than saturated FAs (8.69%), while the sterols percent (39.92%) was higher than the hydrocarbons percent (6.6%). Oleic and palmitic acids are the major FAs (9.48% and 6.14%, respectively). Phytochemical profile uncovered the presence of quercetin, kaempferol, myricetin, and isorhamnetin aglycones and/or glycoside derivatives alongside apigenin, acacetin, and luteolin derivatives. B. pilosa extract suppressed cell proliferation in a concentration-dependent manner against SNB-19 and SK-MEL-5 cell lines (IC 1.66 ± 0.06 and 4.04 ± 0.14 mg/mL, respectively). These potentials aligned with the molecular docking results on aldose reductase and kinase enzymes with promising binding affinities (- 5.3 to - 8.89 kcal mol). B. pilosa metabolites were found as kinases and aldose reductase inhibitors, which rationalize their antiproliferative activity. Unfortunately, toxicity assessments were not performed to assess the safety of B. pilosa extract. Assessment of the therapeutic efficiency via in vivo and clinical studies is required.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-024-05134-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!