AI Article Synopsis

  • The study examined lipid and carbohydrate metabolism as well as adipokines and growth factors in three mouse models with different metabolic disorders: alimentary obesity, leptin-resistant obesity, and diabetes mellitus.
  • In the alimentary obesity model, mice showed moderate liver fat, enlarged adipose tissue, and elevated levels of glucose, adiponectin, and cholesterol.
  • In the leptin-resistant model, severe tissue issues were noted, along with high blood sugar and leptin but low triglycerides and certain growth factors.
  • The diabetes mellitus model revealed a decrease in insulin-producing cells and lower levels of important hormones like adiponectin and leptin, along with high insulin levels.

Article Abstract

Changes in the lipid and carbohydrate metabolism, adipokines, and growth factors during the development of metabolic disorders were studied in three mouse models: C57BL/6 (alimentary obesity), db/db (leptin-resistant obesity), and NOD (diabetes mellitus) lines. In the group of alimentary obesity, moderate fatty infiltration of the liver and hypertrophy of the adipose tissue, hyperglycemia, and increased concentrations of adiponectin, transforming growth factor β1 (TGF-β1), leptin, and cholesterol were detected. In the group of leptin-resistant obesity, multiple pathological changes in tissues, severe hyperglycemia and hyperleptinemia, hyperinsulinemia, and reduced concentrations of triglycerides, adiponectin, myostatin, and TGF-β1 were detected. In NOD mice, reduced number of insulin-positive β cells, hyperinsulinemia, and a decrease in adiponectin, TGF-β1, leptin, and myostatin concentrations were detected.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10517-025-06321-1DOI Listing

Publication Analysis

Top Keywords

metabolic disorders
8
alimentary obesity
8
leptin-resistant obesity
8
tgf-β1 leptin
8
features metabolism
4
metabolism regulation
4
regulation dynamics
4
dynamics experimental
4
experimental models
4
models metabolic
4

Similar Publications

Stereo-EEG around the world: State of the art in Italy.

Neurophysiol Clin

January 2025

Neuroscience and Human Genetics Department, Meyer Children's Hospital IRCCS, Full Member of European Reference Network on Rare and Complex Epilepsies, EpiCARE, viale Pieraccini 24, 50139, Florence, Italy; Neurofarba Department, University of Florence, viale Pieraccini 6, 50139, Florence, Italy.

Stereo-EEG is not just a diagnostic examination but a complex methodology, requiring an accurate synthesis of many data (anatomical, clinical, neurophysiological, cognitive, metabolic, and genetic). The implantation scheme is decided based on a hypothesis (or hypotheses) of epileptogenic zone localization. Subsequently, intracerebral electrical stimulation is used to define the extent of highly functional cortical regions and to reproduce the clinical symptoms and signs associated with seizures.

View Article and Find Full Text PDF

Anaemia is a common phenomenon in patients with malignant gynecological tumors. The occurrence of anaemia in the perioperative period leads to an increased probability of blood transfusion, increased surgical complications,poor wound healing, prolonged hospitalization, increased medical costs, and increased mortality. Intravenous iron, which is known for its rapid onset and lack of gastrointestinal side effects, has become increasingly prevalent in clinical practice.

View Article and Find Full Text PDF

Naturally occurring vitamin E is a lipophilic plant-derived molecule corresponding to the 2R forms of alpha-tocopherol. A series of natural analogs or tocochromanols are present in nature, including β-, γ- and δ-tocopherol (βT, γT, δT), the corresponding tocotrienols (αTE, βTE, γTE, δTE) and tocomonoenols. Differences between these analogs as lipophilic antioxidants and modulators of molecular processes suggest specific therapeutic properties against various disorders associated with acute and chronic inflammation.

View Article and Find Full Text PDF

Indole-3-propionic acid (IPA), a metabolite produced by gut microbiota through tryptophan metabolism, has recently been identified as playing a pivotal role in bone metabolism. IPA promotes osteoblast differentiation by upregulating mitochondrial transcription factor A (Tfam), contributing to increased bone density and supporting bone repair. Simultaneously, it inhibits the formation and activity of osteoclasts, reducing bone resorption, possibly through modulation of the nuclear factor-κB (NF-κB) pathway and downregulation of osteoclast-associated factors, thereby maintaining bone structural integrity.

View Article and Find Full Text PDF

Effects of miRNAs in inborn error of metabolism and treatment strategies.

Postgrad Med J

January 2025

Department of Pediatric Metabolic Diseases, University of Health Sciences, Ankara Etlik City Hospital, Ankara 06170, Turkey.

Metabolism is the name given to all of the chemical reactions in the cell involving thousands of proteins, including enzymes, receptors, and transporters. Inborn errors of metabolism (IEM) are caused by defects in the production and breakdown of proteins, fats, and carbohydrates. Micro ribonucleic acids (miRNAs) are short non-coding RNA molecules, ⁓19-25 nucleotides long, hairpin-shaped, produced from DNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!