Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Monolayer transition metal dichalcogenides are promising materials that not only are atomically thin but also have direct bandgaps, making them highly regarded in optics and optoelectronics. However, their photoluminescence exhibits almost random polarization at room temperature. The emission is also omnidirectional and weak due to the low quantum yield. These limitations hamper the development of practical optoelectronic devices and solid-state single-photon sources for quantum technologies. Here, we demonstrate the spatial control of photoluminescence polarization by coupling monolayer tungsten disulfide with photonic bands having bound states in the continuum. We design a dielectric photonic crystal slab with bound states in the continuum that spectrally overlap with the excitonic resonance of the monolayer of tungsten disulfide. Integration with the photonic crystal slab modulates the directionality and improves the intensity of photoluminescence through extraction and excitation enhancement. Our results will enable the development of compact on-chip optoelectronic and quantum photonic devices based on two-dimensional materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.4c05544 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!