Functional Diversity of Senescent Cells in Driving Aging Phenotypes and Facilitating Tissue Regeneration.

J Biochem

Division of Cancer and Senescence Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan.

Published: January 2025

AI Article Synopsis

  • Cellular senescence is the process where cells permanently stop dividing and secrete inflammatory factors, known as the senescence-associated secretory phenotype (SASP), which can contribute to aging and diseases.
  • Recent studies show that senescent cells can also play important roles in tumor suppression, tissue development, and repair, highlighting their dual nature.
  • The review discusses potential therapies called senolytic agents that target harmful senescent cells while balancing the benefits of transient senescence to improve health as we age.

Article Abstract

As the global population continues to age, understanding the complex role of cellular senescence and its implications in healthy lifespans has gained increasing prominence. Cellular senescence is defined as the irreversible cessation of cell proliferation, accompanied by the secretion of a range of pro-inflammatory factors, collectively termed the senescence-associated secretory phenotype (SASP), in response to various cellular stresses. While the accumulation of senescent cells has been strongly implicated in the aging process and the pathogenesis of age-related diseases owing to their pro-inflammatory properties, recent research has also highlighted their essential roles in processes such as tumour suppression, tissue development, and repair. This review provides a comprehensive examination of the dual nature of senescent cells, evaluating their deleterious contributions to chronic inflammation, tissue dysfunction, and disease, as well as their beneficial roles in maintaining physiological homeostasis. Additionally, we explored the therapeutic potential of senolytic agents designed to selectively eliminate detrimental senescent cells while considering the delicate balance between transient and beneficial senescence and the persistence of pathological senescence. A deeper understanding of these dynamics is critical to develop novel interventions aimed at mitigating age-related dysfunctions and enhancing healthy life expectancies.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jb/mvae098DOI Listing

Publication Analysis

Top Keywords

senescent cells
16
cellular senescence
8
functional diversity
4
senescent
4
diversity senescent
4
cells
4
cells driving
4
driving aging
4
aging phenotypes
4
phenotypes facilitating
4

Similar Publications

Background: Exosomes are nanoscale vesicles derived from various cell types and tissues that have many potential applications, generating great interest from researchers. One particularly intriguing application of exosomes is their use as a direct therapeutic for aesthetic indications. Several studies and case reports have explored the impact of exosomes for numerous cosmetic concerns but a consensus on the outcomes of these studies has not been established.

View Article and Find Full Text PDF

Bone marrow stimulation treatment by bone marrow stromal cells (BMSCs) released from the bone medullary cavity and differentiated into cartilage via microfracture surgery is a frequently employed technique for treating articular cartilage injuries, yet the treatment presents a main drawback of poor cartilage regeneration in the elderly. Prior research indicated that aging could decrease the stemness capacity of BMSCs, thus we made a hypothesis that increasing old BMSCs (OBMSCs) stemness might improve the results of microfracture in the elderly. First, we investigated the correlation between microfracture outcomes and BMSCs stemness using clinical data and animal experiments.

View Article and Find Full Text PDF

Neuroprotective role of sialic-acid-binding immunoglobulin-like lectin-11 in humanized transgenic mice.

Front Neurosci

December 2024

Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany.

Brain aging is a chronic process linked to inflammation, microglial activation, and oxidative damage, which can ultimately lead to neuronal loss. Sialic acid-binding immunoglobulin-like lectin-11 (SIGLEC-11) is a human lineage-specific microglial cell surface receptor that recognizes -2-8-linked oligo-/polysialylated glycomolecules with inhibitory effects on the microglial inflammatory pathways. Recently, the gene locus was prioritized as a top tier microglial gene with potential causality to Alzheimer's disease, although its role in inflammation and neurodegeneration remains poorly understood.

View Article and Find Full Text PDF

Sample multiplexing is an emerging method in single-cell RNA sequencing (scRNA-seq) that addresses high costs and batch effects. Current multiplexing schemes use DNA labels to barcode cell samples but are limited in their stability and extent of labeling across heterogeneous cell populations. Here, we introduce Nanocoding using lipid nanoparticles (LNPs) for high barcode labeling density in multiplexed scRNA-seq.

View Article and Find Full Text PDF

Atherosclerosis, a major contributor to cardiovascular disease, involves lipid accumulation and inflammatory processes in arterial walls, with oxidized low-density lipoprotein (OxLDL) playing a central role. OxLDL is increased during aging and stimulates monocyte transformation into foam cells and induces metabolic reprogramming and pro-inflammatory responses, accelerating atherosclerosis progression and contributing to other age-related diseases. This study investigated the effects of Mdivi-1, a mitochondrial fission inhibitor, and S1QEL, a selective complex I-associated reactive oxygen species (ROS) inhibitor, on OxLDL-induced responses in monocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!