Targeted Covalent Nanodrugs Reinvigorate Antitumor Immunity and Kill Tumors via Improving Intratumoral Accumulation and Retention of Doxorubicin.

ACS Nano

Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.

Published: January 2025

AI Article Synopsis

  • Researchers have developed targeted covalent nanodrugs that improve the delivery and effectiveness of small-molecule chemotherapeutics, overcoming challenges in drug accumulation in tumors.
  • The nanodrugs utilize near-infrared (NIR) irradiation to activate and bind to specific cancer cell receptors, significantly increasing the accumulation of the drug doxorubicin within tumors compared to standard methods.
  • These advancements lead to enhanced cancer treatment outcomes, boosting the immune response and reducing tumor size while also minimizing side effects compared to traditional treatments.

Article Abstract

Specifically improving the intratumoral accumulation and retention and achieving the maximum therapeutic efficacy of small-molecule chemotherapeutics remains a considerable challenge. To address the issue, we here reported near-infrared (NIR) irradiation-activatable targeted covalent nanodrugs by installing diazirine-labeled transferrin receptor 1 (TfR1)-targeted aptamers on PEGylated phospholipid-coated upconversion nanoparticles followed by doxorubicin loading. Targeted covalent nanodrugs recognized and then were activated to covalently cross-link with TfR1 on cancer cells by 980 nm NIR irradiation. Systematic studies revealed that they achieved >6- and >5.5-fold higher intratumoral accumulations of doxorubicin than aptamer-based targeted nanodrugs at 6 and 120 h post intravenous injection, respectively. Based on high drug delivery efficacy, targeted covalent nanodrugs boosted doxorubicin-induced immunogenic cell death, activated antitumor immune responses and shrank the sizes of both primary and distant tumors, and displayed better therapeutic efficacy and less adverse effect than targeted nanodrugs and commercial Doxil in 4T1 syngeneic breast tumor model featuring an immunosuppressive microenvironment. By integrating the specificity of molecular recognition, the reactivity profile of diazirine and the accuracy of light manipulation with nanodrug supremacy, our targeted covalent nanodrugs could be expected as a longer-term and efficient strategy to improve anticancer therapeutic efficacy of chemotherapeutics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c12447DOI Listing

Publication Analysis

Top Keywords

targeted covalent
20
covalent nanodrugs
20
therapeutic efficacy
12
improving intratumoral
8
intratumoral accumulation
8
accumulation retention
8
targeted nanodrugs
8
targeted
7
nanodrugs
7
nanodrugs reinvigorate
4

Similar Publications

β-Lactams are the most widely used antibiotics for the treatment of bacterial infections because of their proven track record of safety and efficacy. However, susceptibility to β-lactam antibiotics is continually eroded by resistance mechanisms. Emerging multidrug-resistant (MDR) strains possessing altered alleles (encoding PBP2) pose a global health emergency as they threaten the utility of ceftriaxone, the last remaining outpatient antibiotic.

View Article and Find Full Text PDF

SUMOylation involves covalent attachment of small ubiquitin-like modifier (SUMO) proteins to specific lysine residues on target proteins and regulates various aspects of their function. Sentrin-specific proteases (SENPs) are key players in both the conjugation reaction of SUMO proteins to their targets and the subsequent deconjugation of SUMO-conjugated substrates. Here, we provide the first comprehensive prenatal description of a lethal syndrome linked to a novel homozygous stop-gain variant in SENP7 c.

View Article and Find Full Text PDF

Covalent labeling of RNA in living cells poses many challenges. Here we describe a structure-guided approach to engineer covalent RNA aptamer-ligand complexes. The key is to modify the cognate ligand with an electrophilic handle that allows it to react with a guanine at the RNA binding site.

View Article and Find Full Text PDF

Glecirasib (JAB-21822) is a new covalent oral KRAS-G12C inhibitor. This multicenter, single-arm phase 2b study assessed the efficacy and safety of glecirasib administered orally at 800 mg daily in patients with locally advanced or metastatic KRAS-mutated nonsmall-cell lung cancer. The primary endpoint was the objective response rate (ORR) assessed by an independent review committee (IRC).

View Article and Find Full Text PDF

Bioengineering chitosan-antibody/fluorescent quantum dot nanoconjugates for targeted immunotheranostics of non-hodgkin B-cell lymphomas.

Int J Biol Macromol

January 2025

Center of Nanoscience, Nanotechnology, and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Brazil. Electronic address:

B-cell non-Hodgkin lymphoma (NHL) is the most common hematologic malignancy, capable of invading the brain, meninges, and nerve roots of the brain and spine, leading to high lethality. Herein, we designed and developed novel nanostructures for the first time by biofunctionalizing chitosan with two specific antibodies (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!