Effect of tumor microenvironment in pancreatic cancer on the loss of β-cell mass: implications for type 3c diabetes.

J Gastroenterol

Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.

Published: January 2025

AI Article Synopsis

  • The study investigates the interactions between the tumor microenvironment (TME) of pancreatic ductal adenocarcinoma (PDAC) and the loss of β-cell mass, which contribute to type 3c diabetes mellitus (T3cDM).
  • Techniques such as single-cell RNA sequencing revealed that tumor, immune, and fibroblast cells interact with endocrine cells, leading to increased cell apoptosis and significant changes in the architecture of paraneoplastic islets.
  • Findings showed that PDAC’s TME is characterized by inflammation and fibrosis, resulting in lower β-cell area and density, particularly in the proximal paratumor region, thereby influencing the onset of T3cDM.

Article Abstract

Background: To explore the complex interactions between the tumor microenvironment (TME) of pancreatic ductal adenocarcinoma (PDAC) and the loss of β-cell mass, further elucidating the mechanisms of type 3c diabetes mellitus (T3cDM) onset.

Methods: Single-cell RNA sequencing was employed to analyze the PDAC TME, identifying cell interactions and gene expression changes of endocrine cells. Pathological changes and paraneoplastic islets were assessed in the proximal paratumor (PP) and distal paratumor (DP). Fractional β-cell area and islet density were compared among normal pancreas from donors and paraneoplastic tissues from non-diabetes mellitus (NDM) and T3cDM patients. TUNEL staining, RT-qPCR and CCK8 assay were applied to demonstrate the β-cell apoptosis.

Results: Tumor cells, immune cells and fibroblasts could interact with endocrine cells, and apoptotic pathways were activated in endocrine cells of the PP. The PDAC TME was characterized by marked inflammation, sever fibrosis and atrophy. The islets in the PP had lower fractional β-cell area (0.68 ± 0.65% vs. 0.86 ± 1.02%, P = 0.037) and islet density (0.54 ± 0.42 counts/mm vs. 0.83 ± 0.90 counts/mm, P = 0.001) compared to those in the DP. The PDAC TME in T3cDM exerted a more significant impact on the paraneoplastic islets compared to NDM. Moreover, β-cell apoptosis was markedly increased in the PP compared to the DP in PDAC patients without diabetes, particularly in smaller islets. Apoptosis-related genes were highly expressed in INS-1E cells exposed to PANC-1 medium.

Conclusion: Our research revealed that the PDAC TME is usually accompanied by some pathological changes, including inflammation, fibrosis, and atrophy. These pathological changes are related to a reduction in β-cell mass and trigger the development of T3cDM.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00535-024-02204-wDOI Listing

Publication Analysis

Top Keywords

pdac tme
16
β-cell mass
12
endocrine cells
12
pathological changes
12
tumor microenvironment
8
loss β-cell
8
type diabetes
8
paraneoplastic islets
8
fractional β-cell
8
β-cell area
8

Similar Publications

Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor with a notably poor response to therapy due to its immunosuppressive tumor microenvironment (TME) and intrinsic drug resistance. The oncolytic virus (OV) represents a promising therapeutic strategy capable of transforming the "cold" immunological profile of PDAC tumors to a "hot" one by reshaping the TME. 4-1BB (CD137), a crucial member of the tumor necrosis factor receptor superfamily, plays a significant role in T-cell activation and function.

View Article and Find Full Text PDF

Enhanced safety and efficacy profile of CD40 antibody upon encapsulation in pHe-triggered membrane-adhesive nanoliposomes.

Nanomedicine (Lond)

January 2025

Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.

Aim: To develop pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL) of CD40a to enhance anti-tumor activity in pancreatic cancer while reducing systemic toxicity.

Materials And Methods: A small library of nanoliposomes (NL) with various lipid compositions were synthesized to prepare pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL). Physical and functional characterization of pHTANL-CD40a was performed via dynamic light scattering (DLS), Transmission Electron Microscopy (TEM), confocal microscopy, and flow cytometry.

View Article and Find Full Text PDF

CREB3L1 facilitates pancreatic tumor progression and reprograms intratumoral tumor-associated macrophages to shape an immunotherapy-resistance microenvironment.

J Immunother Cancer

January 2025

State Key Laboratory of Systems Medicine for Cancer of Oncology Department and Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

Background: To date, a growing body of evidence suggests that unfolded protein response (UPR) sensors play a vital role in carcinogenesis. However, it remains unclear whether they are involved in pancreatic ductal adenocarcinoma (PDAC) and how they relate to clinical outcomes. This study aims to investigate the biological function and mechanism of how a novel UPR sensor, CREB3L1 works in PDAC and further evaluate its clinical application prospect.

View Article and Find Full Text PDF

Effect of tumor microenvironment in pancreatic cancer on the loss of β-cell mass: implications for type 3c diabetes.

J Gastroenterol

January 2025

Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.

Article Synopsis
  • The study investigates the interactions between the tumor microenvironment (TME) of pancreatic ductal adenocarcinoma (PDAC) and the loss of β-cell mass, which contribute to type 3c diabetes mellitus (T3cDM).
  • Techniques such as single-cell RNA sequencing revealed that tumor, immune, and fibroblast cells interact with endocrine cells, leading to increased cell apoptosis and significant changes in the architecture of paraneoplastic islets.
  • Findings showed that PDAC’s TME is characterized by inflammation and fibrosis, resulting in lower β-cell area and density, particularly in the proximal paratumor region, thereby influencing the onset of T3cDM.
View Article and Find Full Text PDF

The tumor microenvironment (TME) has been linked with the pathogenesis of pancreatic ductal adenocarcinoma (PDAC), the most common histological subtype of pancreatic cancer. A central component of the TME are cancer-associated fibroblasts (CAFs), which can either suppress or promote tumor growth in a context-dependent manner. In this review, we will discuss the multi-faceted roles of CAFs in tumor-stroma interactions influencing cancer initiation, progression and therapeutic response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!