Solar-driven interfacial evaporation is one of the most attractive approaches to addressing the global freshwater shortage. However, achieving an integrated high evaporation rate, salt harvesting, and multifunctionality in evaporator is still a crucial challenge. Here, a novel composite membrane with biomimetic micro-nanostructured superhydrophobic surface is designed via ultrafast laser etching technology. Attractively, the double-transition-metal (VMo)CT MXene nanomaterials as a photothermal layer, exhibiting the enhanced photothermal conversion performance due to elevated joint densities of states, which enables high populations of photoexcited carrier relaxation and heat release, provides a new insight into the photothermal conversion mechanism for multiple principal element MXene. Hence, the (VMo)CT MXene-200 composite membrane can achieve a high evaporation rate of 2.23 kg m h under one sun, owing to the enhanced "light trap" effect, photothermal conversion, and high-throughput water transfer. Synergetically, the membrane can induce the directed precipitation of salt at the membrane edge, thus enabling salt harvesting for recycling and zero-emission of brine water. Moreover, the composite membrane is endowed with excellent multifunctionality of anti-/de-icing, anti-fouling, and antibacterial, overcoming the disadvantage that versatility is difficult to be compatible. Therefore, the evaporator and the promising strategy hold great potential for the practical application of solar evaporation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s40820-024-01612-0DOI Listing

Publication Analysis

Top Keywords

salt harvesting
12
composite membrane
12
photothermal conversion
12
biomimetic micro-nanostructured
8
high evaporation
8
evaporation rate
8
membrane
5
micro-nanostructured evaporator
4
evaporator dual-transition-metal
4
dual-transition-metal mxene
4

Similar Publications

Solar-driven interfacial evaporation is one of the most attractive approaches to addressing the global freshwater shortage. However, achieving an integrated high evaporation rate, salt harvesting, and multifunctionality in evaporator is still a crucial challenge. Here, a novel composite membrane with biomimetic micro-nanostructured superhydrophobic surface is designed via ultrafast laser etching technology.

View Article and Find Full Text PDF

Construction and transcriptomic analysis of salinity-induced lipid-rich flocculent microalgae.

J Environ Manage

January 2025

School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China. Electronic address:

The lack of cost-effective nutrient sources and harvesting methods is currently a major obstacle to the production of sustainable biofuels from microalgae. In this study, Chlorella pyrenoidosa was cultured with saline wastewater in a stirred photobioreactor, and lipid-rich flocculent microalgae particles were successfully constructed. As the influent salinity of the photobioreactor increased from 0% to 3%, the particle size and sedimentation rate of flocculent microalgae particles gradually increased, and the lipid accumulation of microalgae also increased gradually.

View Article and Find Full Text PDF

Thiourea induces antioxidant mechanisms of salt tolerance in flax plants.

Physiol Mol Biol Plants

December 2024

Science and Technology Department, University College in Nairiyah, University of Hafr Al Batin (UHB), 31991 Nairiyah, Saudi Arabia.

Salinity is one of the abiotic stress factors that affect plant physiology and cause various plant disorders. Thiourea, which consists of amino, thiol, and imino groups, is an antioxidant and growth regulator. The objective was to determine the antioxidant role of thiourea (0, 3, 6 mM) in attenuating the effects of salinity (0 mM, 50 mM, 100 mM NaCl) on growth, yield, and some biochemical compositions of flax ( L.

View Article and Find Full Text PDF
Article Synopsis
  • Alanine aminotransferase (AlaAT) is an important enzyme in plants that influences key processes like preharvest sprouting, stress tolerance, and nitrogen efficiency.
  • The review highlights advancements in understanding AlaAT's molecular genetics, including gene cloning related to dormancy, which can impact crop yields and plant physiology.
  • Future research and biotechnology strategies, such as genome editing and speed breeding, are expected to enhance the resilience of crop plants against climate change by manipulating AlaAT functions.
View Article and Find Full Text PDF

Surface Doping to Suppress Iodine Ion Migration for Stable FAPbI Perovskite Quantum Dot Solar Cells.

Small

December 2024

Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China.

Formamidine lead iodide (FAPbI) quantum dots (QDs) have attracted great attention as a new generation of photovoltaic material due to their long carrier diffusion length, benign ambient stability, and light-harvesting ability. However, its large surface area with inherent thermodynamic instability and highly defective ionic termination are still major obstacles to fabricating high-performance devices. Herein, a metallic ion dopant is developed to post-treat FAPbI QDs immediately after their fabrication by using a metal-glutamate salt solution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!