A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Reduced Thermal Conductivity and Improved Stability by B-Site Doping in Tin Halide Perovskites. | LitMetric

AI Article Synopsis

  • Halide perovskites, particularly tin halides, are gaining attention as thermoelectric materials due to their low thermal conductivity and good charge transport.
  • Partial substitution of Sn (II) with Ge (II) in CsSnGeI perovskite thin films enhances stability, keeping the material in the black orthorhombic phase after prolonged exposure to air.
  • Ge substitution significantly reduces lattice thermal conductivity and improves the understanding of phonon behavior in these mixed metal perovskites, contributing to their potential in thermoelectric applications.

Article Abstract

Halide perovskites have attracted recent attention as thermoelectric materials due to their low thermal conductivity combined with good charge transport characteristics. The tin halide perovskites hold the highest within metal halide perovskites and offer lower toxicity than lead-containing perovskites that are well-known for photovoltaics. In this study, we partially substitute Sn (II) with Ge (II) to form mixed metal CsSnGeI perovskite thin films that have substantially improved stability, remaining in the black orthorhombic phase after hours of ambient air exposure. We find Ge (II) at the surface seems to be oxidized in preference to Sn (II), and this retards oxidation of the bulk of the film. Moreover, Ge substitutions dramatically reduce the lattice thermal conductivity to 0.26 ± 0.01 WmK for CsSnGeI at 353 K. Density functional theory simulations show that Ge-doped Sn perovskites possess more low-frequency phonon modes than pristine CsSnI, which leads to stronger scattering among the acoustic phonons, resulting in lower phonon group velocity and reduced phonon lifetime. These findings make an important contribution to our understanding of the origin of the reduced lattice thermal conductivity and improved electrical stability of B-site doped perovskite materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.4c02618DOI Listing

Publication Analysis

Top Keywords

thermal conductivity
16
halide perovskites
16
conductivity improved
8
improved stability
8
stability b-site
8
tin halide
8
lattice thermal
8
perovskites
6
reduced thermal
4
conductivity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!